The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

8461-8480hit(16314hit)

  • Characterization and Performance of High-Frequency Pulse Transmission for Human Body Area Communications

    Jianqing WANG  Yuji NISHIKAWA  

     
    PAPER-Human-Body-Area Communication

      Vol:
    E90-B No:6
      Page(s):
    1344-1350

    With the rapid progress of electronic and information technology, an expectation for the realization of body area network (BAN) has risen. However, on-body transmission characteristics are greatly dependent on the frequency, and a high-speed transmission is difficult due to the remarkable signal attenuation at higher frequencies. In this study, we proposed a pulse transmission system with the frequencies at dozens of mega-hertzes. The system was based on an impulse radio (IR) scheme with bi-phase modulation. By using the frequency-dependent finite difference time domain (FD2TD) method, we investigated the on-body transmission characteristics and derived a path loss expression. Based on the transmission characteristics, we also investigated the influences of white Gaussian noises and other narrow-band interferences on the communication link budget and bit error rate (BER) performance. The results have shown the feasibility of the proposed on-body IR communication system.

  • De-Embedding Technique for the Extraction of Parasitic and Stray Capacitances from 1-Port Measurements

    Umberto PAOLETTI  Osami WADA  

     
    PAPER-Printed Circuit Board

      Vol:
    E90-B No:6
      Page(s):
    1298-1304

    A de-embedding technique for the measurement of very small parasitic capacitances of package or small module interconnects is presented. At high frequencies small parasitic capacitances become important, and measurement probes can strongly affect measurement results. The present technique is based on additional measurements with only one tip of the probe touching one conductor, while the second tip is kept floating on the substrate. A necessary condition for its application is that the measured capacitance does not depend on the position of the floating probe tip. Measurements with inverted probe tip polarities are also used. In this way, the capacitances between probe tips and DUT can be estimated together with the parasitic capacitances of interest. Depending on the required accuracy, de-embedding of different orders have been introduced, which consider capacitance configurations of increasing complexity. The technique requires the solution of one or more systems of non-linear equations. In the present example the minimization of the norm of the residual of the system has been treated as a least squares problem, and has been solved numerically with MATLAB. The accuracy of the measurement can be also approximately estimated with the residual. As application example, a small module with power and ground planes has been considered. Two different probes have been used. Even though the stray capacitances of the probes are very different, the values of the extracted parasitic capacitances are in agreement with each other. The accuracy has been verified also with simulation results. To this purpose, a combination of known formulas from the literature, a 2D Finite Element Method (FEM) tool and a 3D Boundary Element Method (BEM) tool have been used. A high accuracy can be obtained, even when a strong capacitive coupling between probe ground and DUT is present. The technique can be applied also when only a subset of measurement results are available.

  • A Quadrature Demodulator for WCDMA Receiver Using Common-Base Input Stage with Robustness to Transmitter Leakage

    Toshiya MITOMO  Osamu WATANABE  Ryuichi FUJIMOTO  Shunji KAWAGUCHI  

     
    PAPER

      Vol:
    E90-C No:6
      Page(s):
    1241-1246

    A quadrature demodulator (QDEMOD) for WCDMA direct-conversion receiver using a common-base input stage is reported. A common-base input stage is robust to parasitic elements and is suitable for integrating on-chip matching circuits to realize small and low-cost RF front-end modules. However, a common-mode blocker signal, such as the transmitter (TX) leakage signal, degrades the noise performance due to DC current increase and intermodulation distortion of the TX leakage signal and noise. We propose a QDEMOD with a common-base input stage capable of suppressing the TX leakage signal using symmetrical inductors. The QDEMOD was fabricated using SiGe BiCMOS process with fT of 75 GHz. The measured results show that the NF degradation does not occur until the TX leakage signal input is larger than -10 dBm.

  • The Effects of Switch Resistances on Pipelined ADC Performances and the Optimization for the Settling Time

    Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E90-C No:6
      Page(s):
    1165-1171

    In this paper, we discuss the effects of switch resistances on the step response of switched-capacitor (SC) circuits, especially multiplying digital-to-analog converters (MDACs) in pipelined analog-to-digital converters. Theory and simulation results reveal that the settling time of MDACs can be decreased by optimizing the switch resistances. This switch resistance optimization does not only effectively increase the speed of single-bit MDACs, but also of multi-bit MDACs. Moreover, multi-bit MDACs are faster than the single-bit MDACs when slewing occurs during the step response. With such an optimization, the response of the switch will be improved by up to 50%.

  • A Study to Realize a 1-V Operational Passive Σ-Δ Modulator by Using a 90 nm CMOS Process

    Toru CHOI  Tatsuya SAKAMOTO  Yasuhiro SUGIMOTO  

     
    LETTER

      Vol:
    E90-C No:6
      Page(s):
    1304-1306

    A 1-V operational sigma-delta modulator with a second-order passive switched capacitor filter is designed and fabricated by using a 90 nm CMOS process. No gate-voltage bootstrapped scheme is adopted to drive analog switches, and the voltage gain of a comparator is chosen to be 94 dB. The experimental results show that the peak SNR reached 68.9 dB with a frequency bandwidth of 40 kHz when the clock was 40 MHz.

  • Efficient Initialization Algorithms on Single-Hop Radio Networks

    Naoki INABA  Koichi WADA  

     
    PAPER-Networks

      Vol:
    E90-D No:6
      Page(s):
    915-922

    We consider an initialization problem in single-hop radio networks. The initialization is the task of assigning distinct ID numbers to nodes in a network. We have greatly improved the previous results [10] for the initialization in an n-node network. We propose randomized initialization algorithms in two cases. The first case is that n is known to all the nodes and the second case is that n is unknown to all the nodes. The algorithm for the first case completes in en+ln n+O (1) expected time slots, and the algorithm for the second case completes in en+O() expected slots. The main idea of the algorithm for the case that n is unknown is presumption of the number of nodes. In the algorithm, each node presumes the number of nodes efficiently and is assigned ID by using the algorithm for the case that n is known with the presumption value.

  • On Hash Functions and List Decoding with Side Information

    M. Prem Laxman DAS  

     
    PAPER-Coding Theory

      Vol:
    E90-A No:6
      Page(s):
    1198-1203

    List decoding is a process by which a list of decoded words is output instead of one. This works for a larger noise threshold than the traditional algorithms. Under some circumstances it becomes useful to be able to find out the actual message from the list. List decoding is assumed to be successful, meaning, the sent message features in the decoded list. This problem has been considered by Guruswami. In Guruswami's work, this disambiguation is done by sending supplementary information through a costly, error-free channel. The model is meaningful only if the number of bits of side information required is much less than the message size. But using deterministic schemes one has to essentially send the entire message through the error free channel. Randomized strategies for both sender and receiver reduces the required number of bits of side information drastically. In Guruswami's work, a Reed-Solomon code based hash family is used to construct such randomized schemes. The scheme with probability utmost ε reports failure and returns the whole list. The scheme doesn't output a wrong message. Also, in Guruswami's work some theoretical bounds have been proved which lower bound the bits of side information required. Here we examine whether the gap between the theoretical bounds and existing schemes may be narrowed. Particularly, we use the same scheme as in Guruswami's work, but use hash families based on Hermitian curve and function fields of Garcia-Stichtenoth tower and analyze the number of bits of side information required for the scheme.

  • Development of an Automated Method for the Detection of Chronic Lacunar Infarct Regions in Brain MR Images

    Ryujiro YOKOYAMA  Xuejun ZHANG  Yoshikazu UCHIYAMA  Hiroshi FUJITA  Takeshi HARA  Xiangrong ZHOU  Masayuki KANEMATSU  Takahiko ASANO  Hiroshi KONDO  Satoshi GOSHIMA  Hiroaki HOSHI  Toru IWAMA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E90-D No:6
      Page(s):
    943-954

    The purpose of our study is to develop an algorithm that would enable the automated detection of lacunar infarct on T1- and T2-weighted magnetic resonance (MR) images. Automated identification of the lacunar infarct regions is not only useful in assisting radiologists to detect lacunar infarcts as a computer-aided detection (CAD) system but is also beneficial in preventing the occurrence of cerebral apoplexy in high-risk patients. The lacunar infarct regions are classified into the following two types for detection: "isolated lacunar infarct regions" and "lacunar infarct regions adjacent to hyperintensive structures." The detection of isolated lacunar infarct regions was based on the multiple-phase binarization (MPB) method. Moreover, to detect lacunar infarct regions adjacent to hyperintensive structures, we used a morphological opening processing and a subtraction technique between images produced using two types of circular structuring elements. Thereafter, candidate regions were selected based on three features -- area, circularity, and gravity center. Two methods were applied to the detected candidates for eliminating false positives (FPs). The first method involved eliminating FPs that occurred along the periphery of the brain using the region-growing technique. The second method, the multi-circular regions difference method (MCRDM), was based on the comparison between the mean pixel values in a series of double circles on a T1-weighted image. A training dataset comprising 20 lacunar infarct cases was used to adjust the parameters. In addition, 673 MR images from 80 cases were used for testing the performance of our method; the sensitivity and specificity were 90.1% and 30.0% with 1.7 FPs per image, respectively. The results indicated that our CAD system for the automatic detection of lacunar infarct on MR images was effective.

  • Signature Sequence Optimization for MC-CDMA: A Geometric Approach

    Hoang-Yang LU  Wen-Hsien FANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1540-1542

    A simple, yet effective geometric method is presented to construct the signature sequences for multicarrier code-division multiple access (MC-CDMA) systems. By minimizing the correlation of the effective signature vectors, the signature sequences are recursively determined via projection onto a properly constructed subspace. Conducted simulations verify the effectiveness of the method.

  • Implementation of the Notch Filters Using Subband Decomposition

    Yung-Yi WANG  Ying LU  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:6
      Page(s):
    1224-1227

    The design of the finite impulse response (FIR) notch filter with controlled null width is expressed as a derivatively contrained quadratic optimization problem. The problem is transformed into an unconstrained one by choosing a null matrix orthogonal to the derivative constraint matrix. In this paper, subband decomposition using wavelet filters is employed to construct the null matrix. Taking advantage of the vanishing moment property of the wavelet filters, the proposed method can adjust the null width of the notch filter for eliminating the intractable iterference by controlling the regularity of the wavelet filters. Simulation results show that the new method can offer comparable performance as those of the existing full-rank-based ones and thus provides a promising alternative to the existing works.

  • IM3 Cancellation Method Using Current Feedback Suitable for a Multi-Stage RFIC Amplifier

    Toshifumi NAKATANI  Koichi OGAWA  

     
    PAPER

      Vol:
    E90-C No:6
      Page(s):
    1209-1221

    A new method of cancellation of IM3 using current feedback has been proposed for a multi-stage RFIC amplifier. In order to cancel the IM3 present in an output signal of the amplifier, the IIP3 level and IM3 phase of the amplifier are adjusted by means of feedback circuit techniques, so that the target specification is satisfied. By estimating the IIP3 level and IM3 phase variations for two states in situations with and without feedback possessing linear factors, the parameters of a feedback circuit can be calculated. To confirm the validity of the method, we have investigated two approaches; one including an analytical approach to designing a two-stage feedback amplifier, achieving an IIP3 level improvement of 14.8 dB. The other method involves the fabrication of single-stage amplifiers with and without feedback, operating at 850 MHz, both of which were designed as an integrated circuit using a 0.18 µm SiGe BiCMOS process. The fabricated IC's were tested using a load-pull measurement system, and a good agreement between the estimated and measured IIP3 level and IM3 phase variations has been achieved. Further studies show that the error in these variations, as estimated by the method, has been found to be less than 1.5 dB and 15 degrees, respectively, when the load admittance at 1701 MHz was greater than 1/50 S.

  • Optical Signal-to-Noise Ratio Monitoring in Optical Transport Networks Using OXCs or Reconfigurable OADMs

    Ji Wook YOUN  Kyung Whan YEOM  Bheom Soon JOO  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:5
      Page(s):
    1225-1227

    We propose and experimentally demonstrate a simple method for monitoring optical signal-to-noise ratio. The novel method can be used in the optical transport networks using optical cross-connects or reconfigurable optical add-drop multiplexers. OSNR is measured by monitoring the transmitted optical power and the reflected optical power from fiber Bragg grating. We have obtained OSNR with an error less than 0.8 dB.

  • A New Iterative Decodable Block Coded Modulation Scheme

    Shang-Chih MA  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E90-B No:5
      Page(s):
    1222-1224

    A new block coded modulation scheme with inter-level memory is proposed. The proposed code construction is based on the use of single parity check codes to concatenate a set of coded blocks. Simulation results show that the proposed scheme can achieve considerable coding gains while the decoding complexity is not too large.

  • Stochastic Associative Processor Operated by Random Voltages

    Michihito UEDA  Ichiro YAMASHITA  Kiyoyuki MORITA  Kentaro SETSUNE  

     
    PAPER-LSI Applications

      Vol:
    E90-C No:5
      Page(s):
    1027-1034

    The latest LSIs still lack performance in pattern matching and picture recognition. Living organisms, on the other hand, devote very little energy to processing of this type, suggesting that they operate according to a fundamentally different concept. There is a notable difference between the two types of processing: the most similar pattern is always chosen by the conventional digital pattern matching process, whereas the choice made by an organism is not always the same: both the most similar patterns and other similar patterns are also chosen stochastically. To realize processing of this latter type, we examined a calculation method for stochastically selecting memorized patterns that show greater similar to the input pattern. Specifically, by the use of a random voltage sequence, we executed stochastic calculation and examined to what extent the accuracy of the solution is improved by increasing the number of random voltage sequences. Although calculation of the Manhattan distance cannot be realized by simply applying stochastic computing, it can be done stochastically by inputting the same random voltage sequence to two modules synchronously. We also found that the accuracy of the solution is improved by increasing the number of random voltage sequences. This processor operates so efficiently that the power consumption for calculation does not increase in proportion to the number of memorized vector elements. This characteristic is equivalent to a higher accuracy being obtained by a smaller number of random voltage sequences: a very promising characteristic of a stochastic associative processor.

  • Transfer and Detection of Single Electrons Using Metal-Oxide-Semiconductor Field-Effect Transistors

    Wancheng ZHANG  Katsuhiko NISHIGUCHI  Yukinori ONO  Akira FUJIWARA  Hiroshi YAMAGUCHI  Hiroshi INOKAWA  Yasuo TAKAHASHI  Nan-Jian WU  

     
    PAPER-Emerging Devices

      Vol:
    E90-C No:5
      Page(s):
    943-948

    A single-electron turnstile and electrometer circuit was fabricated on a silicon-on-insulator substrate. The turnstile, which is operated by opening and closing two metal-oxide-semiconductor field-effect transistors (MOSFETs) alternately, allows current quantization at 20 K due to single-electron transfer. Another MOSFET is placed at the drain side of the turnstile to form an electron storage island. Therefore, one-by-one electron entrance into the storage island from the turnstile can be detected as an abrupt change in the current of the electrometer, which is placed near the storage island and electrically coupled to it. The correspondence between the quantized current and the single-electron counting was confirmed.

  • Nonlinear Estimation of Harmonic Signals

    Kiyoshi NISHIYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:5
      Page(s):
    1021-1027

    A nonlinear harmonic estimator (NHE) is proposed for extracting a harmonic signal and its fundamental frequency in the presence of white noise. This estimator is derived by applying an extended complex Kalman filter (ECKF) to a multiple sinusoidal model with state-representation and then efficiently specializing it for the case of harmonic estimation. The effectiveness of the NHE is verified using computer simulations.

  • Guided-Wave EO Intensity Modulator Using Coupled Microstrip Line Electrode of Higher-Order Harmonic Resonance Combined with Polarization-Reversed Structure

    Akira ENOKIHARA  Hiroyoshi YAJIMA  Hiroshi MURATA  Yasuyuki OKAMURA  

     
    PAPER-LiNbO3 Devices

      Vol:
    E90-C No:5
      Page(s):
    1096-1104

    A novel structure of a resonator type guided-wave electro-optic intensity modulator is introduced that uses a higher-order harmonic resonant electrode of coupled microstrip lines combined with polarization-reversed structure. The light modulation cancellation caused by the light transit-time effect in the resonant electrode, which is longer than the wavelength of the standing wave, is compensated for to enhance modulation efficiency. The modulator for 26 GHz operation was designed and fabricated with a LiTaO3 substrate. The modulation electrode is 9.03 mm long for seventh order harmonic resonance by RF signal. The workability of the modulator was confirmed by experiments with 1.3 µm wavelength light.

  • A Labeled Transition Model A-LTS for History-Based Aspect Weaving and Its Expressive Power

    Isao YAGI  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER-Automata and Formal Language Theory

      Vol:
    E90-D No:5
      Page(s):
    799-807

    This paper proposes an event-based transition system called A-LTS. An A-LTS is a simple system consisting of two agents, a basic program and a monitor. The monitor observes the behavior of the basic program and if the behavior matches some pre-defined pattern, then the monitor interrupts the execution of the basic program and possibly triggers the execution of another specific program. An A-LTS models a common feature found in recent software technologies such as Aspect-Oriented Programming (AOP), history-based access control and active database. We investigate the expressive power of A-LTS and show that it is strictly stronger than finite state machines and strictly weaker than pushdown automata (PDA). This implies that the model checking problem for A-LTS is decidable. It is also shown that the expressive power of A-LTS, linear context-free grammar and deterministic PDA are mutually incomparable. We also discuss the relationship between A-LTS and pointcut/advice in AOP.

  • Physical Origin of Stress-Induced Leakage Currents in Ultra-Thin Silicon Dioxide Films

    Tetsuo ENDOH  Kazuyuki HIROSE  Kenji SHIRAISHI  

     
    PAPER-Ultra-Thin Gate Insulators

      Vol:
    E90-C No:5
      Page(s):
    955-961

    The physical origin of stress-induced leakage currents (SILC) in ultra-thin SiO2 films is described. Assuming a two-step trap-assisted tunneling process accompanied with an energy relaxation process of trapped electrons, conditions of trap sites which are origin of SICL are quantitatively found. It is proposed that the trap site location and the trap state energy can be explained by a mean-free-path of hole in SiO2 films and an atomic structure of the trap site by the O vacancy model.

  • Possibility of Terahertz Injection-Locked Oscillation in an InGaP/InGaAs/GaAs Two-Dimensional Plasmon-Resonant Photomixer

    Mitsuhiro HANABE  Yahya Moubarak MEZIANI  Taiichi OTSUJI  Eiichi SANO  Tanemasa ASANO  

     
    PAPER-Emerging Devices

      Vol:
    E90-C No:5
      Page(s):
    949-954

    We experimentally investigated terahertz photomixing operation at room temperature in an InGaP/InGaAs/ GaAs two-dimensional plasmon-resonant photomixer incorporating grating-bicoupled dual-gate structure. Photoelectrons drifting into a high-density plasmon cavity grating from an adjacent low-density one extensively excite the plasmon resonance, resulting in emission of terahertz radiation. A vertical cavity formed between the two-dimensional plasmon grating plane and an indium-tin-oxide mirror at the back surface gains the radiation. Self-oscillation initially at around 4.5 THz excited by a dc-photo carrier component was reinforced by the photomixed differential-frequency excitation at 4.0 and 5.0 THz. This indicates a possibility of injection-locked oscillation of the photomixer in the terahertz frequency band.

8461-8480hit(16314hit)