The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPR(449hit)

81-100hit(449hit)

  • Spreading and Interleaving Design for Synchronous Interleave-Division Multiple-Access

    Guanghui SONG  Jun CHENG  Yoichiro WATANABE  

     
    PAPER-Information Theory

      Vol:
    E95-A No:3
      Page(s):
    646-656

    A K-user interleave-division multiple-access (IDMA) system with symbol-synchronous and equal-power users is considered. In this IDMA system, the spreading, interleaving, and multiple-access channel (MAC) are jointly considered as an equivalent channel, referred to as an IDMA channel. Given channel signal-to-noise ratio (SNR), the sum capacity of the IDMA channel is only determined by a K-user spread-interleave (SI) matrix. First, it is shown that to maximize the sum capacity of the IDMA channel, rows or columns of its K-user SI matrix should be pairwise orthogonal. The optimal K-user SI matrix is constructed. Second, for the IDMA system with each user employing the same spreading sequence followed by random interleaving, it is shown that, as the number of users approaches infinity, the sum capacity of the IDMA channel converges to a determinate value, which is achieved by a balanced spreading sequence. Moreover, when both the number of users and the data length approach infinity, this determinate value of sum capacity is achieved by an arbitrary spreading sequence. Furthermore, for a finite number of users, an optimal spreading sequence is derived by minimizing an expected column correlation of the K-user SI matrix. It shows that this optimal spreading sequence provides the maximum ergodic sum capacity.

  • Hierarchical MFMO Circuit Modules for an Energy-Efficient SDR DBF

    Jeich MAR  Chi-Cheng KUO  Shin-Ru WU  You-Rong LIN  

     
    PAPER-Application

      Vol:
    E95-D No:2
      Page(s):
    413-425

    The hierarchical multi-function matrix operation (MFMO) circuit modules are designed using coordinate rotations digital computer (CORDIC) algorithm for realizing the intensive computation of matrix operations. The paper emphasizes that the designed hierarchical MFMO circuit modules can be used to develop a power-efficient software-defined radio (SDR) digital beamformer (DBF). The formulas of the processing time for the scalable MFMO circuit modules implemented in field programmable gate array (FPGA) are derived to allocate the proper logic resources for the hardware reconfiguration. The hierarchical MFMO circuit modules are scalable to the changing number of array branches employed for the SDR DBF to achieve the purpose of power saving. The efficient reuse of the common MFMO circuit modules in the SDR DBF can also lead to energy reduction. Finally, the power dissipation and reconfiguration function in the different modes of the SDR DBF are observed from the experiment results.

  • Audio Watermarking Robust against Playback Speed Modification

    Lili LI  Xiangzhong FANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E94-A No:12
      Page(s):
    2889-2893

    This letter proposes a spread spectrum audio watermarking robust against playback speed modification (PSM) attack which introduces both time-scale modification and pitch shifting. Two important improvements are exploited to achieve this robustness. The first one is selecting an embedding region according to the stable characteristic of the audio energy. The second one is stretching the pseudo-random noise sequence to match the length of the embedding region before embedding and detection. Experimental results show that our method is highly robust to common audio signal processing attacks and synchronization attacks including PSM, cropping, trimming and jittering.

  • A New Recovery Mechanism in Superscalar Microprocessors by Recovering Critical Misprediction

    Jiongyao YE  Yu WAN  Takahiro WATANABE  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E94-A No:12
      Page(s):
    2639-2648

    Current trends in modern out-of-order processors involve implementing deeper pipelines and a large instruction window to achieve high performance, which lead to the penalty of the branch misprediction recovery being a critical factor in overall processor performance. Multi path execution is proposed to reduce this penalty by executing both paths following a branch, simultaneously. However, there are some drawbacks in this mechanism, such as design complexity caused by processing both paths after a branch and performance degradation due to hardware resource competition between two paths. In this paper, we propose a new recovery mechanism, called Recovery Critical Misprediction (RCM), to reduce the penalty of branch misprediction recovery. The mechanism uses a small trace cache to save the decoded instructions from the alternative path following a branch. Then, during the subsequent predictions, the trace cache is accessed. If there is a hit, the processor forks the second path of this branch at the renamed stage so that the design complexity in the fetch stage and decode stage is alleviated. The most contribution of this paper is that our proposed mechanism employs critical path prediction to identify the branches that will be most harmful if mispredicted. Only the critical branch can save its alternative path into the trace cache, which not only increases the usefulness of a limited size of trace cache but also avoids the performance degradation caused by the forked non-critical branch. Experimental results employing SPECint 2000 benchmark show that a processor with our proposed RCM improves IPC value by 10.05% compared with a conventional processor.

  • Decoupled 3-D Near-Field Source Localization with UCA via Centrosymmetric Subarrays

    Bum-Soo KWON  Tae-Jin JUNG  Chang-Hong SHIN  Kyun-Kyung LEE  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:11
      Page(s):
    3143-3146

    A novel algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of multiple sources with a uniform circular array (UCA). Based on its centrosymmetric property, a UCA is divided into two subarrays. The steering vectors for these subarrays then yield a 2-D direction of arrival (DOA)-related rotational invariance property in the signal subspace, which enables 2-D DOA estimations using a generalized-ESPRIT algorithm. Based on the estimated 2-D DOAs, a range estimation can then be obtained for each source by defining the 1-D MUSIC spectrum. Despite its low computational complexity, the proposed algorithm can almost match the performance of the benchmark estimator 3-D MUSIC.

  • A Semidefinite Relaxation Approach to Spreading Sequence Estimation for DS-SS Signals

    Hua Guo ZHANG  Qing MOU  Hong Shu LIAO  Ping WEI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3163-3167

    In non-cooperative scenarios, the estimation of direct sequence spread spectrum (DS-SS) signals has to be done in a blind manner. In this letter, we consider the spreading sequence estimation problem for DS-SS signals. First, the maximum likelihood estimate (MLE) of spreading sequence is derived, then a semidefinite relaxation (SDR) approach is proposed to cope with the exponential complexity of performing MLE. Simulation results demonstrate that the proposed approach provides significant performance improvements compared to existing methods, especially in the case of low numbers of data samples and low signal-to-noise ratio (SNR) situations.

  • Spectrally Efficient Frequency-Domain Optical CDM Employing QAM Based on Electrical Spatial Code Spreading

    Shin KANEKO  Sang-Yuep KIM  Noriki MIKI  Hideaki KIMURA  Hisaya HADAMA  Koichi TAKIGUCHI  Hiroshi YAMAZAKI  Takashi YAMADA  Yoshiyuki DOI  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E94-B No:10
      Page(s):
    2877-2880

    We propose frequency-domain optical code-division-multiplexing (CDM) employing quadrature-amplitude-modulation (QAM) using two of multi-level (M-ary) data generated based on electrical-domain spatial code spreading. Its spectral efficiency is enhanced compared to the conventional scheme with amplitude-shift-keying (ASK) using only one of M-ary data. Although it demands the recovery of amplitude and optical phase information, the practicality of the receiver is retained with self-homodyne detection using a phase-shift-keying (PSK) pilot light. Performance is theoretically evaluated and the optimal parameters are derived. Finally, the feasibility of the proposed technique is experimentally confirmed.

  • An ESPRIT-Based Algorithm for 2D-DOA Estimation

    Yung-Yi WANG  Shu-Chi HUANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:9
      Page(s):
    1847-1850

    In this paper, we propose an Estimation of Signal Parameter via Rotational Invariance Techniques (ESPRIT) based algorithm for estimating the two-dimensional-direction-of-arrivals (2D-DOA) of signals impinging on a uniform rectangular array (URA). The basic idea of the proposed algorithm is to successively apply two rounds of one-dimensional ESPRIT (1D-ESPRIT) algorithm for 2D-DOA estimation. The first round 1D-ESPRIT is applied on columns of the URA whereas the other round 1D-ESPRIT is on the rows of the URA. In between, a grouping technique is developed to produces signal groups each containing signals with distinguishable spatial signatures. The grouping technique is performed by using the subspace projection method where the needed spatial information is provided by the first round 1D-ESPRIT algorithm. Computer simulations show that, in addition to having significantly reduced computational complexity, the proposed algorithm possesses better estimation accuracy as compared to the conventional 2D-ESPRIT algorithm.

  • The Design of a K-Band 0.8-V 9.2-mW Phase-Locked Loop

    Zue-Der HUANG  Chung-Yu WU  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:8
      Page(s):
    1289-1294

    A 0.8-V CMOS Phase-Locked Loop (PLL) has been designed and fabricated by using a 0.13-µm 1p8m CMOS process. In the proposed PLL, the double-positive-feedbacks voltage-controlled oscillator (DPF-VCO) is used to generate current signals for the coupling current-mode injection-locked frequency divider (CCMILFD) and current-injection current-mode logic (CICML) divider. A short-pulsed-reset phase frequency detector (SPR-PFD) with the reduced pulse width of reset signal to improve the linear range of the PFD and a complementary-type charge pump to eliminate the current path delay are also adopted in the proposed PLL. The measured in-band phase noise of the fabricated PLL is -98 dBc/Hz. The locking range of the PLL is from 22.6 GHz to 23.3 GHz and the reference spur level is -69 dBm that is 54 dB bellow the carrier. The power consumption is 9.2 mW under a 0.8-V power supply. The proposed PLL has the advantages of low phase noise, low reference spur, and low power dissipation at low voltage operation.

  • Detecting Stealthy Spreaders by Random Aging Streaming Filters

    MyungKeun YOON  Shigang CHEN  

     
    PAPER-Internet

      Vol:
    E94-B No:8
      Page(s):
    2274-2281

    Detecting spreaders, or scan sources, helps intrusion detection systems (IDS) identify potential attackers. The existing work can only detect aggressive spreaders that scan a large number of distinct destinations in a short period of time. However, stealthy spreaders may perform scanning deliberately at a low rate. We observe that these spreaders can easily evade the detection because current IDS's have serious limitations. Being lightweight, the proposed scheme can detect scan sources in high speed networking while residing in SRAM. By theoretical analysis and experiments on real Internet traffic traces, we demonstrate that the proposed scheme detects stealthy spreaders successfully.

  • Silicon Mach-Zehnder Waveguide Interferometer on Silicon-on-Silicon (SOS) Substrate Incorporating the Integrated Three-Terminal Field-Effect Device as an Optical Signal Modulation Structure

    Ricky W. CHUANG  Mao-Teng HSU  Shen-Horng CHOU  Yao-Jen LEE  

     
    PAPER

      Vol:
    E94-C No:7
      Page(s):
    1173-1178

    Silicon Mach-Zehnder interferometric (MZI) waveguide modulator incorporating the n-channel junction field-effect transistor (JFET) as a signal modulation unit was designed, fabricated, and analyzed. The proposed MZI with JFET was designed to operate based on the plasma dispersion effect in the infrared wavelength of 1550 nm. The three different modulation lengths (ML) of 500, 1000, and 2000 µm while keeping the overall MZI length constant at 1.5 cm were set as a general design rule for these 10 µm-wide MZIs under study. When the JFET was operated in an active mode by injecting approximately 50 mA current (Is) to achieve a π phase shift, the modulation efficiency of the device was measured to be η = π /(Is· L) 40π/A-mm. The temporal and frequency response measurements also demonstrate that the respectively rise and fall times measured using a high-speed photoreceiver were in the neighborhood of 8.5 and 7.5 µsec and the 3 dB roll-off frequency (f3 dB) measured was in the excess of 400 kHz.

  • An Image Stabilization Technology for Digital Still Camera Based on Blind Deconvolution

    Haruo HATANAKA  Shimpei FUKUMOTO  Haruhiko MURATA  Hiroshi KANO  Kunihiro CHIHARA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E94-D No:5
      Page(s):
    1082-1089

    In this article, we present a new image-stabilization technology for still images based on blind deconvolution and introduce it to a consumer digital still camera. This technology consists of three features: (1)double-exposure-based PSF detection, (2)efficient image deblurring filter, and (3)edge-based ringing reduction. Without deteriorating the deblurring performance, the new technology allows us to reduce processing time and ringing artifacts, both of which are common problems in image deconvolution.

  • Maxima Exploitation for Reference Blurring Function in Motion Deconvolution

    Rachel Mabanag CHONG  Toshihisa TANAKA  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:3
      Page(s):
    921-928

    The actual blurring function or point spread function (PSF) in an image, in most cases, is similar to a parametric or ideal model. Recently proposed blind deconvolution methods employ this idea for learning during the estimation of PSF. Its dependence on the estimated values may result in ineffective learning when the model is erroneously selected. To overcome this problem, we propose to exploit the image maxima in order to extract a reference point spread function (RPSF). This is only dependent on the degraded image and has a structure that closely resembles a parametric motion blur assuming a known blur support size. Its usage will result in a more stable learning and estimation process since it does not change with respect to iteration or any estimated value. We define a cost function in the vector-matrix form which accounts for the blurring function contour as well as learning towards the RPSF. The effectiveness of using RPSF and the proposed cost function under various motion directions and support sizes will be demonstrated by the experimental results.

  • New Constructions of Frequency-Hopping Sequences from Power-Residue Sequences

    Pinhui KE  Zhihua WANG  Zheng YANG  

     
    LETTER-Information Theory

      Vol:
    E94-A No:3
      Page(s):
    1029-1033

    In this letter, we give a generalized construction for sets of frequency-hopping sequences (FHSs) based on power-residue sequences. Our construction encompasses a known optimal construction and can generate new optimal sets of FHSs which simultaneously achieve the Peng-Fan bound and the Lempel-Greenberger bound.

  • Performance Optimization of Time Delay Estimation Based on Chirp Spread Spectrum Using ESPRIT

    Seong-Hyun JANG  Yeong-Sam KIM  Sang-Hoon YOON  Jong-Wha CHONG  

     
    LETTER-Sensing

      Vol:
    E94-B No:2
      Page(s):
    607-609

    In this letter, we analyze the effect of the size of observed data on the performance of time delay estimation (TDE) in the chirp spread spectrum (CSS) system. By adjusting the size of observed data, we reduce the effect of DC offsets, which would otherwise degrade the performance of TDE based on CSS, and we optimize the performance of TDE in CSS system. Finally, we derive the optimal size of observed data of TDE in CSS system.

  • Capacitance Reduction Technique for Switched-Capacitor Circuits Based on Charge Distribution and Partial Charge Transfer

    Retdian NICODIMUS  Shigetaka TAKAGI  

     
    PAPER

      Vol:
    E94-A No:2
      Page(s):
    625-632

    This paper proposes a technique to reduce the capacitance spread in switched-capacitor (SC) filters. The proposed technique is based on a simple charge distribution and partial charge transfer which is applicable to various integrator topologies. An implementation example on an existing integrator topology and a design example of a 2nd-order SC low-pass filter are given to demonstrate the performance of the proposed technique. A design example of an SC filter show that the filter designed using the proposed technique has an approximately 23% less total capacitance than the one of SC low-pass filter with conventional capacitance spread reduction technique.

  • Fabrication of Fine Particles of Semiconducting Polymers by Electrospray Deposition

    Yuto HIROSE  Itaru NATORI  Hisaya SATO  Kuniaki TANAKA  Hiroaki USUI  

     
    PAPER

      Vol:
    E94-C No:2
      Page(s):
    164-169

    Semiconducting polymers, poly(1,4-phenylene) (PPP) and poly(4-diphenylaminostyrene) (PDAS), which are soluble to organic solvents, were synthesized and were deposited by means of electrospray deposition (ESD). The ESD generated spherical shells of diameters ranging from a few to several tens of microns. The shells consisted of coagulation of nanometric particles of the semiconducting polymers. Formation of the shells was largely influenced by the concentration of spray solution. It was also found that the formation of shells can be achieved with various types of soluble polymers.

  • Doppler Spread Mitigation Using Harmonic Transform for Wireless OFDM Systems in Mobile Communications

    Saiyan SAIYOD  Sakchai THIPCHAKSURAT  Ruttikorn VARAKULSIRIPUNTH  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2634-2645

    In wireless OFDM systems, the system performance is suffered from frequency offset and symbol timing offset due to the Doppler effect. Using the discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) for traditional signal transformation from the time-domain into frequency-domain, and vice versa, the system performance may be severely degraded. To make the OFDM system that can tolerate the above problems, we have considered that the harmonic transform can be applicable to the traditional signal transformation, thereby improving the system performance. In this paper, we combine the good characteristics of harmonic transform and instantaneous frequency to be a novel transformation for wireless OFDM systems. We propose a modified discrete harmonic transform (MDHT) which can be performed adaptively. Our proposed scheme called the modified discrete harmonic transform OFDM (MDHT-OFDM scheme). We derive the equations of the novel discrete harmonic transform which are suitable for wireless OFDM systems and the novel channel estimation cooperated with the novel transformation. The proposed channel estimation is performed in both time-domain and frequency-domain. The performance of a MDHT-OFDM scheme is evaluated by means of a simulation. We compare the performance of a MDHT-OFDM scheme with one of the conventional DFT-OFDM scheme in the term of symbol error rate (SER). MDHT-OFDM scheme can achieve better performance than that of the conventional DFT-OFDM scheme in mitigating the Doppler spread.

  • A Generalized Construction of Optimal Zero-Correlation Zone Sequence Set from a Perfect Sequence Pair

    Takafumi HAYASHI  Shinya MATSUFUJI  

     
    LETTER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2337-2344

    The present paper introduces a new approach to the construction of a sequence set with a zero-correlation zone (ZCZ). This sequence set is referred to as a ZCZ sequence set. The proposed sequence construction generates a ZCZ sequence set from a perfect sequence pair or a single perfect sequence. The proposed method can generate an optimal ZCZ sequence set, the member size of which reaches the theoretical bound.

  • Performance of DS/SS System Using Pseudo-Ternary M-Sequences

    Ryo ENOMOTO  Hiromasa HABUCHI  Koichiro HASHIURA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E93-A No:11
      Page(s):
    2299-2306

    In this paper, newly-found properties of the pseudo-ternary maximum-length shift register sequences (pseudo-ternary M-sequences) are described. In particular, the balance properties, the run-length distribution, the cross-correlation properties, and the decimation relationships are shown. The pseudo-ternary M-sequence is obtained by subtracting the one-chip shifted version from the {+1,-1}-valued M-sequence. Moreover, in this paper, performances of the direct sequence spread spectrum (DS/SS) system using the pseudo-ternary M-sequence are analyzed. In the performance evaluation, tracking error performance (jitter) and bit error rate (BER) performance that takes the jitter into account in DS/SS system with a pseudo-ternary M-sequence non-coherent DLL are evaluated. Using the pseudo-ternary M-sequence instead of the conventional M-sequences can improve the tracking error performance about 2.8 [dB]. Moreover, BER of the DS/SS system using the pseudo-ternary M-sequence is superior about 0.8 [dB] to that using the {+1,-1}-valued M-sequence.

81-100hit(449hit)