The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

261-280hit(4624hit)

  • FPGA Implementation of 3-Bit Quantized Multi-Task CNN for Contour Detection and Disparity Estimation

    Masayuki MIYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/10/26
      Vol:
    E105-D No:2
      Page(s):
    406-414

    Object contour detection is a task of extracting the shape created by the boundaries between objects in an image. Conventional methods limit the detection targets to specific categories, or miss-detect edges of patterns inside an object. We propose a new method to represent a contour image where the pixel value is the distance to the boundary. Contour detection becomes a regression problem that estimates this contour image. A deep convolutional network for contour estimation is combined with stereo vision to detect unspecified object contours. Furthermore, thanks to similar inference targets and common network structure, we propose a network that simultaneously estimates both contour and disparity with fully shared weights. As a result of experiments, the multi-tasking network drew a good precision-recall curve, and F-measure was about 0.833 for FlyingThings3D dataset. L1 loss of disparity estimation for the dataset was 2.571. This network reduces the amount of calculation and memory capacity by half, and accuracy drop compared to the dedicated networks is slight. Then we quantize both weights and activations of the network to 3-bit. We devise a dedicated hardware architecture for the quantized CNN and implement it on an FPGA. This circuit uses only internal memory to perform forward propagation calculations, that eliminates high-power external memory accesses. This circuit is a stall-free pixel-by-pixel pipeline, and performs 8 rows, 16 input channels, 16 output channels, 3 by 3 pixels convolution calculations in parallel. The convolution calculation performance at the operating frequency of 250 MHz is 9 TOPs/s.

  • Image Adjustment for Multi-Exposure Images Based on Convolutional Neural Networks

    Isana FUNAHASHI  Taichi YOSHIDA  Xi ZHANG  Masahiro IWAHASHI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/10/21
      Vol:
    E105-D No:1
      Page(s):
    123-133

    In this paper, we propose an image adjustment method for multi-exposure images based on convolutional neural networks (CNNs). We call image regions without information due to saturation and object moving in multi-exposure images lacking areas in this paper. Lacking areas cause the ghosting artifact in fused images from sets of multi-exposure images by conventional fusion methods, which tackle the artifact. To avoid this problem, the proposed method estimates the information of lacking areas via adaptive inpainting. The proposed CNN consists of three networks, warp and refinement, detection, and inpainting networks. The second and third networks detect lacking areas and estimate their pixel values, respectively. In the experiments, it is observed that a simple fusion method with the proposed method outperforms state-of-the-art fusion methods in the peak signal-to-noise ratio. Moreover, the proposed method is applied for various fusion methods as pre-processing, and results show obviously reducing artifacts.

  • A Novel Transferable Sparse Regression Method for Cross-Database Facial Expression Recognition

    Wenjing ZHANG  Peng SONG  Wenming ZHENG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2021/10/12
      Vol:
    E105-D No:1
      Page(s):
    184-188

    In this letter, we propose a novel transferable sparse regression (TSR) method, for cross-database facial expression recognition (FER). In TSR, we firstly present a novel regression function to regress the data into a latent representation space instead of a strict binary label space. To further alleviate the influence of outliers and overfitting, we impose a row sparsity constraint on the regression term. And a pairwise relation term is introduced to guide the feature transfer learning. Secondly, we design a global graph to transfer knowledge, which can well preserve the cross-database manifold structure. Moreover, we introduce a low-rank constraint on the graph regularization term to uncover additional structural information. Finally, several experiments are conducted on three popular facial expression databases, and the results validate that the proposed TSR method is superior to other non-deep and deep transfer learning methods.

  • Balanced, Unbalances, and One-Sided Distributed Teams - An Empirical View on Global Software Engineering Education

    Daniel Moritz MARUTSCHKE  Victor V. KRYSSANOV  Patricia BROCKMANN  

     
    PAPER

      Pubricized:
    2021/09/30
      Vol:
    E105-D No:1
      Page(s):
    2-10

    Global software engineering education faces unique challenges to reflect as close as possible real-world distributed team development in various forms. The complex nature of planning, collaborating, and upholding partnerships present administrative difficulties on top of budgetary constrains. These lead to limited opportunities for students to gain international experiences and for researchers to propagate educational and practical insights. This paper presents an empirical view on three different course structures conducted by the same research and educational team over a four-year time span. The courses were managed in Japan and Germany, facing cultural challenges, time-zone differences, language barriers, heterogeneous and homogeneous team structures, amongst others. Three semesters were carried out before and one during the Covid-19 pandemic. Implications for a recent focus on online education for software engineering education and future directions are discussed. As administrational and institutional differences typically do not guarantee the same number of students on all sides, distributed teams can be 1. balanced, where the number of students on one side is less than double the other, 2. unbalanced, where the number of students on one side is significantly larger than double the other, or 3. one-sided, where one side lacks students altogether. An approach for each of these three course structures is presented and discussed. Empirical analyses and reoccurring patterns in global software engineering education are reported. In the most recent three global software engineering classes, students were surveyed at the beginning and the end of the semester. The questionnaires ask students to rank how impactful they perceive factors related to global software development such as cultural aspects, team structure, language, and interaction. Results of the shift in mean perception are compared and discussed for each of the three team structures.

  • A Construction of Inter-Group Complementary Sequence Set Based on Interleaving Technique

    Xiaoyu CHEN  Huanchang LI  Yihan ZHANG  Yubo LI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/07/12
      Vol:
    E105-A No:1
      Page(s):
    68-71

    A new construction of shift sequences is proposed under the condition of P|L, and then the inter-group complementary (IGC) sequence sets are constructed based on the shift sequence. By adjusting the parameter q, two or three IGC sequence sets can be obtained. Compared with previous methods, the proposed construction can provide more sequence sets for both synchronous and asynchronous code-division multiple access communication systems.

  • Kernel-Based Regressors Equivalent to Stochastic Affine Estimators

    Akira TANAKA  Masanari NAKAMURA  Hideyuki IMAI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    116-122

    The solution of the ordinary kernel ridge regression, based on the squared loss function and the squared norm-based regularizer, can be easily interpreted as a stochastic linear estimator by considering the autocorrelation prior for an unknown true function. As is well known, a stochastic affine estimator is one of the simplest extensions of the stochastic linear estimator. However, its corresponding kernel regression problem is not revealed so far. In this paper, we give a formulation of the kernel regression problem, whose solution is reduced to a stochastic affine estimator, and also give interpretations of the formulation.

  • Lempel-Ziv Factorization in Linear-Time O(1)-Workspace for Constant Alphabets

    Weijun LIU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/08/30
      Vol:
    E104-D No:12
      Page(s):
    2145-2153

    Computing the Lempel-Ziv Factorization (LZ77) of a string is one of the most important problems in computer science. Nowadays, it has been widely used in many applications such as data compression, text indexing and pattern discovery, and already become the heart of many file compressors like gzip and 7zip. In this paper, we show a linear time algorithm called Xone for computing the LZ77, which has the same space requirement with the previous best space requirement for linear time LZ77 factorization called BGone. Xone greatly improves the efficiency of BGone. Experiments show that the two versions of Xone: XoneT and XoneSA are about 27% and 31% faster than BGoneT and BGoneSA, respectively.

  • Semantic Guided Infrared and Visible Image Fusion

    Wei WU  Dazhi ZHANG  Jilei HOU  Yu WANG  Tao LU  Huabing ZHOU  

     
    LETTER-Image

      Pubricized:
    2021/06/10
      Vol:
    E104-A No:12
      Page(s):
    1733-1738

    In this letter, we propose a semantic guided infrared and visible image fusion method, which can train a network to fuse different semantic objects with different fusion weights according to their own characteristics. First, we design the appropriate fusion weights for each semantic object instead of the whole image. Second, we employ the semantic segmentation technology to obtain the semantic region of each object, and generate special weight maps for the infrared and visible image via pre-designed fusion weights. Third, we feed the weight maps into the loss function to guide the image fusion process. The trained fusion network can generate fused images with better visual effect and more comprehensive scene representation. Moreover, we can enhance the modal features of various semantic objects, benefiting subsequent tasks and applications. Experiment results demonstrate that our method outperforms the state-of-the-art in terms of both visual effect and quantitative metrics.

  • Achieving Ultra-Low Latency for Network Coding-Aware Multicast Fronthaul Transmission in Cache-Enabled C-RANs

    Qinglong LIU  Chongfu ZHANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/06/15
      Vol:
    E104-A No:12
      Page(s):
    1723-1727

    In cloud radio access networks (C-RANs) architecture, the Hybrid Automatic Repeat Request (HARQ) protocol imposes a strict limit on the latency between the baseband unit (BBU) pool and the remote radio head (RRH), which is a key challenge in the adoption of C-RANs. In this letter, we propose a joint edge caching and network coding strategy (ENC) in the C-RANs with multicast fronthaul to improve the performance of HARQ and thus achieve ultra-low latency in 5G cellular systems. We formulate the edge caching design as an optimization problem for maximizing caching utility so as to obtain the optimal caching time. Then, for real-time data flows with different latency constraints, we propose a scheduling policy based on network coding group (NCG) to maximize coding opportunities and thus improve the overall latency performance of multicast fronthaul transmission. We evaluate the performance of ENC by conducting simulation experiments based on NS-3. Numerical results show that ENC can efficiently reduce the delivery delay.

  • A Synthesis Method Based on Multi-Stage Optimization for Power-Efficient Integrated Optical Logic Circuits

    Ryosuke MATSUO  Jun SHIOMI  Tohru ISHIHARA  Hidetoshi ONODERA  Akihiko SHINYA  Masaya NOTOMI  

     
    PAPER

      Pubricized:
    2021/05/18
      Vol:
    E104-A No:11
      Page(s):
    1546-1554

    Optical logic circuits based on integrated nanophotonics attract significant interest due to their ultra-high-speed operation. However, the power dissipation of conventional optical logic circuits is exponential to the number of inputs of target logic functions. This paper proposes a synthesis method reducing power dissipation to a polynomial order of the number of inputs while exploiting the high-speed nature. Our method divides the target logic function into multiple sub-functions with Optical-to-Electrical (OE) converters. Each sub-function has a smaller number of inputs than that of the original function, which enables to exponentially reduce the power dissipated by an optical logic circuit representing the sub-function. The proposed synthesis method can mitigate the OE converter delay overhead by parallelizing sub-functions. We apply the proposed synthesis method to the ISCAS'85 benchmark circuits. The power consumption of the conventional circuits based on the Binary Decision Diagram (BDD) is at least three orders of magnitude larger than that of the optical logic circuits synthesized by the proposed method. The proposed method reduces the power consumption to about 100mW. The delay of almost all the circuits synthesized by the proposed method is kept less than four times the delay of the conventional BDD-based circuit.

  • Analysis of Signal Distribution in ASE-Limited Optical On-Off Keying Direct-Detection Systems

    Hiroki KAWAHARA  Kyo INOUE  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2021/05/14
      Vol:
    E104-B No:11
      Page(s):
    1386-1394

    This paper provides on a theoretical and numerical study of the probability density function (PDF) of the on-off keying (OOK) signals in ASE-limited systems. We present simple closed formulas of PDFs for the optical intensity and the received baseband signal. To confirm the validity of our model, the calculation results yielded by the proposed formulas are compared with those of numerical simulations and the conventional Gaussian model. Our theoretical and numerical results confirm that the signal distribution differs from a Gaussian profile. It is also demonstrated that our model can properly evaluate the signal distribution and the resultant BER performance, especially for systems with an optical bandwidth close to the receiver baseband width.

  • Research on DoS Attacks Intrusion Detection Model Based on Multi-Dimensional Space Feature Vector Expansion K-Means Algorithm

    Lijun GAO  Zhenyi BIAN  Maode MA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/04/22
      Vol:
    E104-B No:11
      Page(s):
    1377-1385

    DoS (Denial of Service) attacks are becoming one of the most serious security threats to global networks. We analyze the existing DoS detection methods and defense mechanisms in depth. In recent years, K-Means and improved variants have been widely examined for security intrusion detection, but the detection accuracy to data is not satisfactory. In this paper we propose a multi-dimensional space feature vector expansion K-Means model to detect threats in the network environment. The model uses a genetic algorithm to optimize the weight of K-Means multi-dimensional space feature vector, which greatly improves the detection rate against 6 typical Dos attacks. Furthermore, in order to verify the correctness of the model, this paper conducts a simulation on the NSL-KDD data set. The results show that the algorithm of multi-dimensional space feature vectors expansion K-Means improves the recognition accuracy to 96.88%. Furthermore, 41 kinds of feature vectors in NSL-KDD are analyzed in detail according to a large number of experimental training. The feature vector of the probability positive return of security attack detection is accurately extracted, and a comparison chart is formed to support subsequent research. A theoretical analysis and experimental results show that the multi-dimensional space feature vector expansion K-Means algorithm has a good application in the detection of DDos attacks.

  • Neural Network Calculations at the Speed of Light Using Optical Vector-Matrix Multiplication and Optoelectronic Activation

    Naoki HATTORI  Jun SHIOMI  Yutaka MASUDA  Tohru ISHIHARA  Akihiko SHINYA  Masaya NOTOMI  

     
    PAPER

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1477-1487

    With the rapid progress of the integrated nanophotonics technology, the optical neural network architecture has been widely investigated. Since the optical neural network can complete the inference processing just by propagating the optical signal in the network, it is expected more than one order of magnitude faster than the electronics-only implementation of artificial neural networks (ANN). In this paper, we first propose an optical vector-matrix multiplication (VMM) circuit using wavelength division multiplexing, which enables inference processing at the speed of light with ultra-wideband. This paper next proposes optoelectronic circuit implementation for batch normalization and activation function, which significantly improves the accuracy of the inference processing without sacrificing the speed performance. Finally, using a virtual environment for machine learning and an optoelectronic circuit simulator, we demonstrate the ultra-fast and accurate operation of the optical-electronic ANN circuit.

  • Detecting Depression from Speech through an Attentive LSTM Network

    Yan ZHAO  Yue XIE  Ruiyu LIANG  Li ZHANG  Li ZHAO  Chengyu LIU  

     
    LETTER-Speech and Hearing

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:11
      Page(s):
    2019-2023

    Depression endangers people's health conditions and affects the social order as a mental disorder. As an efficient diagnosis of depression, automatic depression detection has attracted lots of researcher's interest. This study presents an attention-based Long Short-Term Memory (LSTM) model for depression detection to make full use of the difference between depression and non-depression between timeframes. The proposed model uses frame-level features, which capture the temporal information of depressive speech, to replace traditional statistical features as an input of the LSTM layers. To achieve more multi-dimensional deep feature representations, the LSTM output is then passed on attention layers on both time and feature dimensions. Then, we concat the output of the attention layers and put the fused feature representation into the fully connected layer. At last, the fully connected layer's output is passed on to softmax layer. Experiments conducted on the DAIC-WOZ database demonstrate that the proposed attentive LSTM model achieves an average accuracy rate of 90.2% and outperforms the traditional LSTM network and LSTM with local attention by 0.7% and 2.3%, respectively, which indicates its feasibility.

  • An Effective Feature Extraction Mechanism for Intrusion Detection System

    Cheng-Chung KUO  Ding-Kai TSENG  Chun-Wei TSAI  Chu-Sing YANG  

     
    PAPER

      Pubricized:
    2021/07/27
      Vol:
    E104-D No:11
      Page(s):
    1814-1827

    The development of an efficient detection mechanism to determine malicious network traffic has been a critical research topic in the field of network security in recent years. This study implemented an intrusion-detection system (IDS) based on a machine learning algorithm to periodically convert and analyze real network traffic in the campus environment in almost real time. The focuses of this study are on determining how to improve the detection rate of an IDS and how to detect more non-well-known port attacks apart from the traditional rule-based system. Four new features are used to increase the discriminant accuracy. In addition, an algorithm for balancing the data set was used to construct the training data set, which can also enable the learning model to more accurately reflect situations in real environment.

  • Influence of Access to Reading Material during Concept Map Recomposition in Reading Comprehension and Retention

    Pedro GABRIEL FONTELES FURTADO  Tsukasa HIRASHIMA  Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  

     
    PAPER-Educational Technology

      Pubricized:
    2021/08/02
      Vol:
    E104-D No:11
      Page(s):
    1941-1950

    This study investigated the influence of reading time while building a closed concept map on reading comprehension and retention. It also investigated the effect of having access to the text during closed concept map creation on reading comprehension and retention. Participants from Amazon Mechanical Turk (N =101) read a text, took an after-text test, and took part in one of three conditions, “Map & Text”, “Map only”, and “Double Text”, took an after-activity test, followed by a two-week retention period and then one final delayed test. Analysis revealed that higher reading times were associated with better reading comprehension and better retention. Furthermore, when comparing “Map & Text” to the “Map only” condition, short-term reading comprehension was improved, but long-term retention was not improved. This suggests that having access to the text while building closed concept maps can improve reading comprehension, but long term learning can only be improved if students invest time accessing both the map and the text.

  • Practical Integral Distinguishers on SNOW 3G and KCipher-2

    Jin HOKI  Kosei SAKAMOTO  Kazuhiko MINEMATSU  Takanori ISOBE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1603-1611

    In this paper, we explore the security against integral attacks on well-known stream ciphers SNOW 3G and KCipher-2. SNOW 3G is the core of the 3GPP confidentiality and integrity algorithms UEA2 and UIA2, and KCipher-2 is a standard algorithm of ISO/IEC 18033-4 and CRYPTREC. Specifically, we investigate the propagation of the division property inside SNOW 3G and KCipher-2 by the Mixed-Integer Linear Programming to efficiently find an integral distinguisher. As a result, we present a 7-round integral distinguisher with 23 chosen IVs for KCipher-2. As far as we know, this is the first attack on a reduced variant of KCipher-2 by the third party. In addition, we present a 13-round integral distinguisher with 27 chosen IVs for SNOW 3G, whose time/data complexity is half of the previous best attack by Biryukov et al.

  • Faster SET Operation in Phase Change Memory with Initialization Open Access

    Yuchan WANG  Suzhen YUAN  Wenxia ZHANG  Yuhan WANG  

     
    PAPER-Electronic Materials

      Pubricized:
    2021/04/14
      Vol:
    E104-C No:11
      Page(s):
    651-655

    In conclusion, an initialization method has been introduced and studied to improve the SET speed in PCM. Before experiment verification, a two-dimensional finite analysis is used, and the results illustrate the proposed method is feasible to improve SET speed. Next, the R-I performances of the discrete PCM device and the resistance distributions of a 64 M bits PCM test chip with and without the initialization have been studied and analyzed, which confirms that the writing speed has been greatly improved. At the same time, the resistance distribution for the repeated initialization operations suggest that a large number of PCM cells have been successfully changed to be in an intermediate state, which is thought that only a shorter current pulse can make the cells SET successfully in this case. Compared the transmission electron microscope (TEM) images before and after initialization, it is found that there are some small grains appeared after initialization, which indicates that the nucleation process of GST has been carried out, and only needs to provide energy for grain growth later.

  • Spatial Compression of Sensing Information for Exploiting the Vacant Frequency Resource Using Radio Sensors

    Kenichiro YAMAMOTO  Osamu TAKYU  Keiichiro SHIRAI  Yasushi FUWA  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1217-1226

    Recently, broadband wireless communication has been significantly enhanced; thus, frequency spectrum scarcity has become an extremely serious problem. Spatial frequency reuse based on spectrum databases has attracted significant attention. The spectrum database collects wireless environment information, such as the radio signal strength indicator (RSSI), estimates the propagation coefficient for the propagation loss and shadow effect, and finds a vacant area where the secondary system uses the frequency spectrum without harmful interference to the primary system. Wireless sensor networks are required to collect the RSSI from a radio environmental monitor. However, a large number of RSSI values should be gathered because numerous sensors are spread over the wireless environment. In this study, a data compression technique based on spatial features, such as buildings and houses, is proposed. Using computer simulation and experimental evaluation, we confirm that the proposed compression method successfully reduces the size of the RSSI and restores the original RSSI in the recovery process.

  • Recent Progress on High Output Power, High Frequency and Wide Bandwidth GaN Power Amplifiers Open Access

    Masaru SATO  Yoshitaka NIIDA  Atsushi YAMADA  Junji KOTANI  Shiro OZAKI  Toshihiro OHKI  Naoya OKAMOTO  Norikazu NAKAMURA  

     
    INVITED PAPER

      Pubricized:
    2021/03/12
      Vol:
    E104-C No:10
      Page(s):
    480-487

    This paper presents recent progress on high frequency and wide bandwidth GaN high power amplifiers (PAs) that are usable for high-data-rate wireless communications and modern radar systems. The key devices and design techniques for PA are described in this paper. The results of the state-of-the art GaN PAs for microwave to millimeter-wave applications and design methodology for ultra-wideband GaN PAs are shown. In order to realize high output power density, InAlGaN/GaN HEMTs were employed. An output power density of 14.8 W/mm in S-band was achieved which is 1.5 times higher than that of the conventional AlGaN/GaN HEMTs. This technique was applied to the millimeter-wave GaN PAs, and a measured power density at 96 GHz was 3 W/mm. The modified Angelov model was employed for a millimeter-wave design. W-band GaN MMIC achieved the maximum Pout of 1.15 W under CW operation. The PA with Lange coupler achieved 2.6 W at 94 GHz. The authors also developed a wideband PA. A power combiner with an impedance transformation function based on the transmission line transformer (TLT) technique was adopted for the wideband PA design. The fabricated PA exhibited an average Pout of 233 W, an average PAE of 42 %, in the frequency range of 0.5 GHz to 2.1 GHz.

261-280hit(4624hit)