The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

1021-1040hit(21534hit)

  • Leveraging Scale-Up Machines for Swift DBMS Replication on IaaS Platforms Using BalenaDB

    Kaiho FUKUCHI  Hiroshi YAMADA  

     
    PAPER-Software System

      Pubricized:
    2021/10/01
      Vol:
    E105-D No:1
      Page(s):
    92-104

    In infrastructure-as-a-service platforms, cloud users can adjust their database (DB) service scale to dynamic workloads by changing the number of virtual machines running a DB management system (DBMS), called DBMS instances. Replicating a DBMS instance is a non-trivial task since DBMS replication is time-consuming due to the trend that cloud vendors offer high-spec DBMS instances. This paper presents BalenaDB, which performs urgent DBMS replication for handling sudden workload increases. Unlike convectional replication schemes that implicitly assume DBMS replicas are generated on remote machines, BalenaDB generates a warmed-up DBMS replica on an instance running on the local machine where the master DBMS instance runs, by leveraging the master DBMS resources. We prototyped BalenaDB on MySQL 5.6.21, Linux 3.17.2, and Xen 4.4.1. The experimental results show that the time for generating the warmed-up DBMS replica instance on BalenaDB is up to 30× shorter than an existing DBMS instance replication scheme, achieving significantly efficient memory utilization.

  • Kernel-Based Regressors Equivalent to Stochastic Affine Estimators

    Akira TANAKA  Masanari NAKAMURA  Hideyuki IMAI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    116-122

    The solution of the ordinary kernel ridge regression, based on the squared loss function and the squared norm-based regularizer, can be easily interpreted as a stochastic linear estimator by considering the autocorrelation prior for an unknown true function. As is well known, a stochastic affine estimator is one of the simplest extensions of the stochastic linear estimator. However, its corresponding kernel regression problem is not revealed so far. In this paper, we give a formulation of the kernel regression problem, whose solution is reduced to a stochastic affine estimator, and also give interpretations of the formulation.

  • Searching and Learning Discriminative Regions for Fine-Grained Image Retrieval and Classification

    Kangbo SUN  Jie ZHU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/10/18
      Vol:
    E105-D No:1
      Page(s):
    141-149

    Local discriminative regions play important roles in fine-grained image analysis tasks. How to locate local discriminative regions with only category label and learn discriminative representation from these regions have been hot spots. In our work, we propose Searching Discriminative Regions (SDR) and Learning Discriminative Regions (LDR) method to search and learn local discriminative regions in images. The SDR method adopts attention mechanism to iteratively search for high-response regions in images, and uses this as a clue to locate local discriminative regions. Moreover, the LDR method is proposed to learn compact within category and sparse between categories representation from the raw image and local images. Experimental results show that our proposed approach achieves excellent performance in both fine-grained image retrieval and classification tasks, which demonstrates its effectiveness.

  • Multi-Source Domain Generalization Using Domain Attributes for Recurrent Neural Network Language Models

    Naohiro TAWARA  Atsunori OGAWA  Tomoharu IWATA  Hiroto ASHIKAWA  Tetsunori KOBAYASHI  Tetsuji OGAWA  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    150-160

    Most conventional multi-source domain adaptation techniques for recurrent neural network language models (RNNLMs) are domain-centric. In these approaches, each domain is considered independently and this makes it difficult to apply the models to completely unseen target domains that are unobservable during training. Instead, our study exploits domain attributes, which represent common knowledge among such different domains as dialects, types of wordings, styles, and topics, to achieve domain generalization that can robustly represent unseen target domains by combining the domain attributes. To achieve attribute-based domain generalization system in language modeling, we introduce domain attribute-based experts to a multi-stream RNNLM called recurrent adaptive mixture model (RADMM) instead of domain-based experts. In the proposed system, a long short-term memory is independently trained on each domain attribute as an expert model. Then by integrating the outputs from all the experts in response to the context-dependent weight of the domain attributes of the current input, we predict the subsequent words in the unseen target domain and exploit the specific knowledge of each domain attribute. To demonstrate the effectiveness of our proposed domain attributes-centric language model, we experimentally compared the proposed model with conventional domain-centric language model by using texts taken from multiple domains including different writing styles, topics, dialects, and types of wordings. The experimental results demonstrated that lower perplexity can be achieved using domain attributes.

  • SōjiTantei: Function-Call Reachability Detection of Vulnerable Code for npm Packages

    Bodin CHINTHANET  Raula GAIKOVINA KULA  Rodrigo ELIZA ZAPATA  Takashi ISHIO  Kenichi MATSUMOTO  Akinori IHARA  

     
    LETTER

      Pubricized:
    2021/09/27
      Vol:
    E105-D No:1
      Page(s):
    19-20

    It has become common practice for software projects to adopt third-party dependencies. Developers are encouraged to update any outdated dependency to remain safe from potential threats of vulnerabilities. In this study, we present an approach to aid developers show whether or not a vulnerable code is reachable for JavaScript projects. Our prototype, SōjiTantei, is evaluated in two ways (i) the accuracy when compared to a manual approach and (ii) a larger-scale analysis of 780 clients from 78 security vulnerability cases. The first evaluation shows that SōjiTantei has a high accuracy of 83.3%, with a speed of less than a second analysis per client. The second evaluation reveals that 68 out of the studied 78 vulnerabilities reported having at least one clean client. The study proves that automation is promising with the potential for further improvement.

  • Effects of Image Processing Operations on Adversarial Noise and Their Use in Detecting and Correcting Adversarial Images Open Access

    Huy H. NGUYEN  Minoru KURIBAYASHI  Junichi YAMAGISHI  Isao ECHIZEN  

     
    PAPER

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    65-77

    Deep neural networks (DNNs) have achieved excellent performance on several tasks and have been widely applied in both academia and industry. However, DNNs are vulnerable to adversarial machine learning attacks in which noise is added to the input to change the networks' output. Consequently, DNN-based mission-critical applications such as those used in self-driving vehicles have reduced reliability and could cause severe accidents and damage. Moreover, adversarial examples could be used to poison DNN training data, resulting in corruptions of trained models. Besides the need for detecting adversarial examples, correcting them is important for restoring data and system functionality to normal. We have developed methods for detecting and correcting adversarial images that use multiple image processing operations with multiple parameter values. For detection, we devised a statistical-based method that outperforms the feature squeezing method. For correction, we devised a method that uses for the first time two levels of correction. The first level is label correction, with the focus on restoring the adversarial images' original predicted labels (for use in the current task). The second level is image correction, with the focus on both the correctness and quality of the corrected images (for use in the current and other tasks). Our experiments demonstrated that the correction method could correct nearly 90% of the adversarial images created by classical adversarial attacks and affected only about 2% of the normal images.

  • A Simple but Efficient Ranking-Based Differential Evolution

    Jiayi LI  Lin YANG  Junyan YI  Haichuan YANG  Yuki TODO  Shangce GAO  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    189-192

    Differential Evolution (DE) algorithm is simple and effective. Since DE has been proposed, it has been widely used to solve various complex optimization problems. To further exploit the advantages of DE, we propose a new variant of DE, termed as ranking-based differential evolution (RDE), by performing ranking on the population. Progressively better individuals in the population are used for mutation operation, thus improving the algorithm's exploitation and exploration capability. Experimental results on a number of benchmark optimization functions show that RDE significantly outperforms the original DE and performs competitively in comparison with other two state-of-the-art DE variants.

  • Water Content Estimation in Thermal Insulation Layer Using Millimeter-Wave Optical Coherence Tomography

    Yushi TAMENORI  Haruka TOKUNAGA  Li YI  Tadao NAGATSUMA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/08/05
      Vol:
    E105-C No:1
      Page(s):
    1-8

    The demand for non-destructive inspection of the thermal insulation layer of Japanese houses has been increasing. Surface temperature measurement is commonly used for estimating the condition of the thermal insulation layer that is located inside the walls. However, the accuracy needs to be improved because this approach only considers the surface information. To evaluate the thermal insulation layer inside the walls, a millimeter-wave tomography system is proposed for measuring the water content. The system can provide ∼10 mm range resolution to differentiate the reflections from the thermal insulation layer behind the external wall. The Lichtenecker-Rother model is applied for the quantitative evaluation of the water content using the reflected signal. The proposed model is consistent with the experimental data, confirming that a maximum error of 16.0% is obtained. It is also demonstrated that the water content distribution can be visualized with a range resolution of 10.6 mm.

  • Construction and Encoding Algorithm for Maximum Run-Length Limited Single Insertion/Deletion Correcting Code

    Reona TAKEMOTO  Takayuki NOZAKI  

     
    PAPER-Coding Theory

      Pubricized:
    2021/07/02
      Vol:
    E105-A No:1
      Page(s):
    35-43

    Maximum run-length limited codes are constraint codes used in communication and data storage systems. Insertion/deletion correcting codes correct insertion or deletion errors caused in transmitted sequences and are used for combating synchronization errors. This paper investigates the maximum run-length limited single insertion/deletion correcting (RLL-SIDC) codes. More precisely, we construct efficiently encodable and decodable RLL-SIDC codes. Moreover, we present its encoding and decoding algorithms and show the redundancy of the code.

  • Finite-Size Correction of Expectation-Propagation Detection Open Access

    Yuki OBA  Keigo TAKEUCHI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/07/19
      Vol:
    E105-A No:1
      Page(s):
    77-81

    Expectation propagation (EP) is a powerful algorithm for signal recovery in compressed sensing. This letter proposes correction of a variance message before denoising to improve the performance of EP in the high signal-to-noise ratio (SNR) regime for finite-sized systems. The variance massage is replaced by an observation-dependent consistent estimator of the mean-square error in estimation before denoising. Massive multiple-input multiple-output (MIMO) is considered to verify the effectiveness of the proposed correction. Numerical simulations show that the proposed variance correction improves the high SNR performance of EP for massive MIMO with a few hundred transmit and receive antennas.

  • Movie Map for Virtual Exploration in a City

    Kiyoharu AIZAWA  

     
    INVITED PAPER

      Pubricized:
    2021/10/12
      Vol:
    E105-D No:1
      Page(s):
    38-45

    This paper introduces our work on a Movie Map, which will enable users to explore a given city area using 360° videos. Visual exploration of a city is always needed. Nowadays, we are familiar with Google Street View (GSV) that is an interactive visual map. Despite the wide use of GSV, it provides sparse images of streets, which often confuses users and lowers user satisfaction. Forty years ago, a video-based interactive map was created - it is well-known as Aspen Movie Map. Movie Map uses videos instead of sparse images and seems to improve the user experience dramatically. However, Aspen Movie Map was based on analog technology with a huge effort and never built again. Thus, we renovate the Movie Map using state-of-the-art technology. We build a new Movie Map system with an interface for exploring cities. The system consists of four stages; acquisition, analysis, management, and interaction. After acquiring 360° videos along streets in target areas, the analysis of videos is almost automatic. Frames of the video are localized on the map, intersections are detected, and videos are segmented. Turning views at intersections are synthesized. By connecting the video segments following the specified movement in an area, we can watch a walking view along a street. The interface allows for easy exploration of a target area. It can also show virtual billboards in the view.

  • Orthogonal Variable Spreading Factor Codes over Finite Fields Open Access

    Shoichiro YAMASAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2021/06/24
      Vol:
    E105-A No:1
      Page(s):
    44-52

    The present paper proposes orthogonal variable spreading factor codes over finite fields for multi-rate communications. The proposed codes have layered structures that combine sequences generated by discrete Fourier transforms over finite fields, and have various code lengths. The design method for the proposed codes and examples of the codes are shown.

  • CMOS Image Sensor with Pixel-Parallel ADC and HDR Reconstruction from Intermediate Exposure Images Open Access

    Shinnosuke KURATA  Toshinori OTAKA  Yusuke KAMEDA  Takayuki HAMAMOTO  

     
    LETTER-Image

      Pubricized:
    2021/07/26
      Vol:
    E105-A No:1
      Page(s):
    82-86

    We propose a HDR (high dynamic range) reconstruction method in an image sensor with a pixel-parallel ADC (analog-to-digital converter) for non-destructively reading out the intermediate exposure image. We report the circuit design for such an image sensor and the evaluation of the basic HDR reconstruction method.

  • Parameter Estimation of Markovian Arrivals with Utilization Data

    Chen LI  Junjun ZHENG  Hiroyuki OKAMURA  Tadashi DOHI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/07/08
      Vol:
    E105-B No:1
      Page(s):
    1-10

    Utilization data (a kind of incomplete data) is defined as the fraction of a fixed period in which the system is busy. In computer systems, utilization data is very common and easily observable, such as CPU utilization. Unlike inter-arrival times and waiting times, it is more significant to consider the parameter estimation of transaction-based systems with utilization data. In our previous work [7], a novel parameter estimation method using utilization data for an Mt/M/1/K queueing system was presented to estimate the parameters of a non-homogeneous Poisson process (NHPP). Since NHPP is classified as a simple counting process, it may not fit actual arrival streams very well. As a generalization of NHPP, Markovian arrival process (MAP) takes account of the dependency between consecutive arrivals and is often used to model complex, bursty, and correlated traffic streams. In this paper, we concentrate on the parameter estimation of an MAP/M/1/K queueing system using utilization data. In particular, the parameters are estimated by using maximum likelihood estimation (MLE) method. Numerical experiments on real utilization data validate the proposed approach and evaluate the effective traffic intensity of the arrival stream of MAP/M/1/K queueing system. Besides, three kinds of utilization datasets are created from a simulation to assess the effects of observed time intervals on both estimation accuracy and computational cost. The numerical results show that MAP-based approach outperforms the exiting method in terms of both the estimation accuracy and computational cost.

  • A Case for Low-Latency Communication Layer for Distributed Operating Systems

    Sang-Hoon KIM  

     
    LETTER-Software System

      Pubricized:
    2021/09/06
      Vol:
    E104-D No:12
      Page(s):
    2244-2247

    There have been increasing demands for distributed operating systems to better utilize scattered resources over multiple nodes. This paper enlightens the challenges and requirements for the communication layers for distributed operating systems, and makes a case for a versatile, high-performance communication layer over InfiniBand network.

  • LTL Model Checking for Register Pushdown Systems

    Ryoma SENDA  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/08/31
      Vol:
    E104-D No:12
      Page(s):
    2131-2144

    A pushdown system (PDS) is known as an abstract model of recursive programs. For PDS, model checking methods have been studied and applied to various software verification such as interprocedural data flow analysis and malware detection. However, PDS cannot manipulate data values from an infinite domain. A register PDS (RPDS) is an extension of PDS by adding registers to deal with data values in a restricted way. This paper proposes algorithms for LTL model checking problems for RPDS with simple and regular valuations, which are labelings of atomic propositions to configurations with reasonable restriction. First, we introduce RPDS and related models, and then define the LTL model checking problems for RPDS. Second, we give algorithms for solving these problems and also show that the problems are EXPTIME-complete. As practical examples, we show solutions of a malware detection and an XML schema checking in the proposed framework.

  • Interleaved Weighted Round-Robin: A Network Calculus Analysis Open Access

    Seyed Mohammadhossein TABATABAEE  Jean-Yves LE BOUDEC  Marc BOYER  

     
    INVITED PAPER

      Pubricized:
    2021/07/01
      Vol:
    E104-B No:12
      Page(s):
    1479-1493

    Weighted Round-Robin (WRR) is often used, due to its simplicity, for scheduling packets or tasks. With WRR, a number of packets equal to the weight allocated to a flow can be served consecutively, which leads to a bursty service. Interleaved Weighted Round-Robin (IWRR) is a variant that mitigates this effect. We are interested in finding bounds on worst-case delay obtained with IWRR. To this end, we use a network calculus approach and find a strict service curve for IWRR. The result is obtained using the pseudo-inverse of a function. We show that the strict service curve is the best obtainable one, and that delay bounds derived from it are tight (i.e., worst-case) for flows of packets of constant size. Furthermore, the IWRR strict service curve dominates the strict service curve for WRR that was previously published. We provide some numerical examples to illustrate the reduction in worst-case delays caused by IWRR compared to WRR.

  • Coarse-to-Fine Evolutionary Method for Fast Horizon Detection in Maritime Images

    Uuganbayar GANBOLD  Junya SATO  Takuya AKASHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/09/08
      Vol:
    E104-D No:12
      Page(s):
    2226-2236

    Horizon detection is useful in maritime image processing for various purposes, such as estimation of camera orientation, registration of consecutive frames, and restriction of the object search region. Existing horizon detection methods are based on edge extraction. For accuracy, they use multiple images, which are filtered with different filter sizes. However, this increases the processing time. In addition, these methods are not robust to blurting. Therefore, we developed a horizon detection method without extracting the candidates from the edge information by formulating the horizon detection problem as a global optimization problem. A horizon line in an image plane was represented by two parameters, which were optimized by an evolutionary algorithm (genetic algorithm). Thus, the local and global features of a horizon were concurrently utilized in the optimization process, which was accelerated by applying a coarse-to-fine strategy. As a result, we could detect the horizon line on high-resolution maritime images in about 50ms. The performance of the proposed method was tested on 49 videos of the Singapore marine dataset and the Buoy dataset, which contain over 16000 frames under different scenarios. Experimental results show that the proposed method can achieve higher accuracy than state-of-the-art methods.

  • Radar Emitter Identification Based on Auto-Correlation Function and Bispectrum via Convolutional Neural Network

    Zhiling XIAO  Zhenya YAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/06/10
      Vol:
    E104-B No:12
      Page(s):
    1506-1513

    This article proposes to apply the auto-correlation function (ACF), bispectrum analysis, and convolutional neural networks (CNN) to implement radar emitter identification (REI) based on intrapulse features. In this work, we combine ACF with bispectrum for signal feature extraction. We first calculate the ACF of each emitter signal, and then the bispectrum of the ACF and obtain the spectrograms. The spectrum images are taken as the feature maps of the radar emitters and fed into the CNN classifier to realize automatic identification. We simulate signal samples of different modulation types in experiments. We also consider the feature extraction method directly using bispectrum analysis for comparison. The simulation results demonstrate that by combining ACF with bispectrum analysis, the proposed scheme can attain stronger robustness to noise, the spectrograms of our approach have more pronounced features, and our approach can achieve better identification performance at low signal-to-noise ratios.

  • New Binary Quantum Codes Derived from Quasi-Twisted Codes with Hermitian Inner Product

    Yu YAO  Yuena MA  Jingjie LV  Hao SONG  Qiang FU  

     
    LETTER-Coding Theory

      Pubricized:
    2021/05/28
      Vol:
    E104-A No:12
      Page(s):
    1718-1722

    In this paper, a special class of two-generator quasi-twisted (QT) codes with index 2 will be presented. We explore the algebraic structure of the class of QT codes and the form of their Hermitian dual codes. A sufficient condition for self-orthogonality with Hermitian inner product is derived. Using the class of Hermitian self-orthogonal QT codes, we construct two new binary quantum codes [[70, 42, 7]]2, [[78, 30, 10]]2. According to Theorem 6 of Ref.[2], we further can get 9 new binary quantum codes. So a total of 11 new binary quantum codes are obtained and there are 10 quantum codes that can break the quantum Gilbert-Varshamov (GV) bound.

1021-1040hit(21534hit)