The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

921-940hit(21534hit)

  • A Method of K-Means Clustering Based on TF-IDF for Software Requirements Documents Written in Chinese Language

    Jing ZHU  Song HUANG  Yaqing SHI  Kaishun WU  Yanqiu WANG  

     
    PAPER-Software Engineering

      Pubricized:
    2021/12/28
      Vol:
    E105-D No:4
      Page(s):
    736-754

    Nowadays there is no way to automatically obtain the function points when using function point analyze (FPA) method, especially for the requirement documents written in Chinese language. Considering the characteristics of Chinese grammar in words segmentation, it is necessary to divide words accurately Chinese words, so that the subsequent entity recognition and disambiguation can be carried out in a smaller range, which lays a solid foundation for the efficient automatic extraction of the function points. Therefore, this paper proposed a method of K-Means clustering based on TF-IDF, and conducts experiments with 24 software requirement documents written in Chinese language. The results show that the best clustering effect is achieved when the extracted information is retained by 55% to 75% and the number of clusters takes the middle value of the total number of clusters. Not only for Chinese, this method and conclusion of this paper, but provides an important reference for automatic extraction of function points from software requirements documents written in other Oriental languages, and also fills the gaps of data preprocessing in the early stage of automatic calculation function points.

  • Stability Analysis and Control of Decision-Making of Miners in Blockchain

    Kosuke TODA  Naomi KUZE  Toshimitsu USHIO  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2021/10/01
      Vol:
    E105-A No:4
      Page(s):
    682-688

    To maintain blockchain-based services with ensuring its security, it is an important issue how to decide a mining reward so that the number of miners participating in the mining increases. We propose a dynamical model of decision-making for miners using an evolutionary game approach and analyze the stability of equilibrium points of the proposed model. The proposed model is described by the 1st-order differential equation. So, it is simple but its theoretical analysis gives an insight into the characteristics of the decision-making. Through the analysis of the equilibrium points, we show the transcritical bifurcations and hysteresis phenomena of the equilibrium points. We also design a controller that determines the mining reward based on the number of participating miners to stabilize the state where all miners participate in the mining. Numerical simulation shows that there is a trade-off in the choice of the design parameters.

  • Dual Self-Guided Attention with Sparse Question Networks for Visual Question Answering

    Xiang SHEN  Dezhi HAN  Chin-Chen CHANG  Liang ZONG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2022/01/06
      Vol:
    E105-D No:4
      Page(s):
    785-796

    Visual Question Answering (VQA) is multi-task research that requires simultaneous processing of vision and text. Recent research on the VQA models employ a co-attention mechanism to build a model between the context and the image. However, the features of questions and the modeling of the image region force irrelevant information to be calculated in the model, thus affecting the performance. This paper proposes a novel dual self-guided attention with sparse question networks (DSSQN) to address this issue. The aim is to avoid having irrelevant information calculated into the model when modeling the internal dependencies on both the question and image. Simultaneously, it overcomes the coarse interaction between sparse question features and image features. First, the sparse question self-attention (SQSA) unit in the encoder calculates the feature with the highest weight. From the self-attention learning of question words, the question features of larger weights are reserved. Secondly, sparse question features are utilized to guide the focus on image features to obtain fine-grained image features, and to also prevent irrelevant information from being calculated into the model. A dual self-guided attention (DSGA) unit is designed to improve modal interaction between questions and images. Third, the sparse question self-attention of the parameter δ is optimized to select these question-related object regions. Our experiments with VQA 2.0 benchmark datasets demonstrate that DSSQN outperforms the state-of-the-art methods. For example, the accuracy of our proposed model on the test-dev and test-std is 71.03% and 71.37%, respectively. In addition, we show through visualization results that our model can pay more attention to important features than other advanced models. At the same time, we also hope that it can promote the development of VQA in the field of artificial intelligence (AI).

  • Five Cells and Tilepaint are NP-Complete

    Chuzo IWAMOTO  Tatsuya IDE  

     
    PAPER

      Pubricized:
    2021/10/18
      Vol:
    E105-D No:3
      Page(s):
    508-516

    Five Cells and Tilepaint are Nikoli's pencil puzzles. We study the computational complexity of Five Cells and Tilepaint puzzles. It is shown that deciding whether a given instance of each puzzle has a solution is NP-complete.

  • Sublinear Computation Paradigm: Constant-Time Algorithms and Sublinear Progressive Algorithms Open Access

    Kyohei CHIBA  Hiro ITO  

     
    INVITED PAPER-Algorithms and Data Structures

      Pubricized:
    2021/10/08
      Vol:
    E105-A No:3
      Page(s):
    131-141

    The challenges posed by big data in the 21st Century are complex: Under the previous common sense, we considered that polynomial-time algorithms are practical; however, when we handle big data, even a linear-time algorithm may be too slow. Thus, sublinear- and constant-time algorithms are required. The academic research project, “Foundations of Innovative Algorithms for Big Data,” which was started in 2014 and will finish in September 2021, aimed at developing various techniques and frameworks to design algorithms for big data. In this project, we introduce a “Sublinear Computation Paradigm.” Toward this purpose, we first provide a survey of constant-time algorithms, which are the most investigated framework of this area, and then present our recent results on sublinear progressive algorithms. A sublinear progressive algorithm first outputs a temporary approximate solution in constant time, and then suggests better solutions gradually in sublinear-time, finally finds the exact solution. We present Sublinear Progressive Algorithm Theory (SPA Theory, for short), which enables to make a sublinear progressive algorithm for any property if it has a constant-time algorithm and an exact algorithm (an exponential-time one is allowed) without losing any computation time in the big-O sense.

  • Constructions of l-Adic t-Deletion-Correcting Quantum Codes Open Access

    Ryutaroh MATSUMOTO  Manabu HAGIWARA  

     
    PAPER-Coding Theory

      Pubricized:
    2021/09/17
      Vol:
    E105-A No:3
      Page(s):
    571-575

    We propose two systematic constructions of deletion-correcting codes for protecting quantum inforomation. The first one works with qudits of any dimension l, which is referred to as l-adic, but only one deletion is corrected and the constructed codes are asymptotically bad. The second one corrects multiple deletions and can construct asymptotically good codes. The second one also allows conversion of stabilizer-based quantum codes to deletion-correcting codes, and entanglement assistance.

  • Anomaly Prediction for Wind Turbines Using an Autoencoder with Vibration Data Supported by Power-Curve Filtering

    Masaki TAKANASHI  Shu-ichi SATO  Kentaro INDO  Nozomu NISHIHARA  Hiroki HAYASHI  Toru SUZUKI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:3
      Page(s):
    732-735

    The prediction of the malfunction timing of wind turbines is essential for maintaining the high profitability of the wind power generation industry. Studies have been conducted on machine learning methods that use condition monitoring system data, such as vibration data, and supervisory control and data acquisition (SCADA) data to detect and predict anomalies in wind turbines automatically. Autoencoder-based techniques that use unsupervised learning where the anomaly pattern is unknown have attracted significant interest in the area of anomaly detection and prediction. In particular, vibration data are considered useful because they include the changes that occur in the early stages of a malfunction. However, when autoencoder-based techniques are applied for prediction purposes, in the training process it is difficult to distinguish the difference between operating and non-operating condition data, which leads to the degradation of the prediction performance. In this letter, we propose a method in which both vibration data and SCADA data are utilized to improve the prediction performance, namely, a method that uses a power curve composed of active power and wind speed. We evaluated the method's performance using vibration and SCADA data obtained from an actual wind farm.

  • FPGA Implementation of a Stream-Based Real-Time Hardware Line Segment Detector

    Taito MANABE  Taichi KATAYAMA  Yuichiro SHIBATA  

     
    PAPER

      Pubricized:
    2021/09/02
      Vol:
    E105-A No:3
      Page(s):
    468-477

    Line detection is the fundamental image processing technique which has various applications in the field of computer vision. For example, lane keeping required to realize autonomous vehicles can be implemented based on line detection technique. For such purposes, however, low detection latency and power consumption are essential. Using hardware-based stream processing is considered as an effective way to achieve such properties since it eliminates the need of storing the whole frame into energy-consuming external memory. In addition, adopting FPGAs enables us to keep flexibility of software processing. The line segment detector (LSD) is the algorithm based on intensity gradient, and performs better than the well-known Hough transform in terms of processing speed and accuracy. However, implementing the original LSD on FPGAs as a pipeline structure is difficult mainly because of its iterative region growing approach. Therefore, we propose a simple and stream-friendly line segment detection algorithm based on the concept of LSD. The whole system is implemented on a Xilinx Zynq-7000 XC7Z020-1CLG400C FPGA without any external memory. Evaluation results reveal that the implemented system is able to detect line segments successfully and is compact with 7.5% of Block RAM and less than 7.0% of the other resources used, while maintaining 60 fps throughput for VGA videos. It is also shown that the system is power-efficient compared to software processing on CPUs.

  • Private Decision Tree Evaluation with Constant Rounds via (Only) SS-3PC over Ring and Field

    Hikaru TSUCHIDA  Takashi NISHIDE  Yusaku MAEDA  

     
    PAPER

      Pubricized:
    2021/09/14
      Vol:
    E105-A No:3
      Page(s):
    214-230

    Multiparty computation (MPC) is the technology that computes an arbitrary function represented as a circuit without revealing input values. Typical MPC uses secret sharing (SS) schemes, garbled circuit (GC), and homomorphic encryption (HE). These cryptographic technologies have a trade-off relationship for the computation cost, communication cost, and type of computable circuit. Hence, the optimal choice depends on the computing resources, communication environment, and function related to applications. The private decision tree evaluation (PDTE) is one of the important applications of secure computation. There exist several PDTE protocols with constant communication rounds using GC, HE, and SS-MPC over the field. However, to the best of our knowledge, PDTE protocols with constant communication rounds using MPC based on SS over the ring (requiring only lower computation costs and communication complexity) are non-trivial and still missing. In this paper, we propose a PDTE protocol based on a three-party computation (3PC) protocol over the ring with one corruption. We also propose another three-party PDTE protocol over the field with one corruption that is more efficient than the naive construction.

  • A Study on Gain Enhanced Leaf-Shaped Bow-Tie Slot Array Antenna within Quasi-Millimeter Wave Band

    Mangseang HOR  Takashi HIKAGE  Manabu YAMAMOTO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/09/30
      Vol:
    E105-B No:3
      Page(s):
    285-294

    In this paper, a linear array of 4 leaf-shaped bowtie slot antennas is proposed for use in quasi-millimeter wave band. The slot antennas array is designed to operate at 28GHz frequency band. The leaf-shaped bowtie slot antenna is a type of self-complementary antenna with low profile and low cost of fabrication. The proposed antenna structure offers improvement in radiation pattern, gain, and -10dB impedance bandwidth. Through out of this paper radiation pattern, actual gain, and -10dB impedance bandwidth are evaluated by Finite Different Time Domain (FDTD) simulation. Antenna characteristics are analyzed in the frequency range of 27GHz to 29GHz. To improve antenna characteristics such as actual gain and -10dB impedance bandwidth, a dielectric superstrate layer with relative permittivity of 10.2 is placed on top of ground plane of the slot antennas array. Three antenna structures are introduced and compared. With two layers of dielectric superstrate on top of the antennas ground plane, analysis results show that -10dB impedance bandwidth occupies the frequency range of 27.17GHz to 28.39GHz. Therefore, the operational impedance bandwidth is 1.22GHz. Maximum actual gain of the slot antennas array with two dielectric superstrate layers is 20.49dBi and -3dB gain bandwidth occupies the frequency range of 27.02GHz to 28.57GHz. To validate the analysis results, prototype of the designed slot antennas array is fabricated. Characteristics of the slot antennas array are measured and compared with the analysis results.

  • Fault Injection Attacks Utilizing Waveform Pattern Matching against Neural Networks Processing on Microcontroller Open Access

    Yuta FUKUDA  Kota YOSHIDA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2021/09/22
      Vol:
    E105-A No:3
      Page(s):
    300-310

    Deep learning applications have often been processed in the cloud or on servers. Still, for applications that require privacy protection and real-time processing, the execution environment is moved to edge devices. Edge devices that implement a neural network (NN) are physically accessible to an attacker. Therefore, physical attacks are a risk. Fault attacks on these devices are capable of misleading classification results and can lead to serious accidents. Therefore, we focus on the softmax function and evaluate a fault attack using a clock glitch against NN implemented in an 8-bit microcontroller. The clock glitch is used for fault injection, and the injection timing is controlled by monitoring the power waveform. The specific waveform is enrolled in advance, and the glitch timing pulse is generated by the sum of absolute difference (SAD) matching algorithm. Misclassification can be achieved by appropriately injecting glitches triggered by pattern detection. We propose a countermeasure against fault injection attacks that utilizes the randomization of power waveforms. The SAD matching is disabled by random number initialization on the summation register of the softmax function.

  • Weakly Byzantine Gathering with a Strong Team

    Jion HIROSE  Junya NAKAMURA  Fukuhito OOSHITA  Michiko INOUE  

     
    PAPER

      Pubricized:
    2021/10/11
      Vol:
    E105-D No:3
      Page(s):
    541-555

    We study the gathering problem requiring a team of mobile agents to gather at a single node in arbitrary networks. The team consists of k agents with unique identifiers (IDs), and f of them are weakly Byzantine agents, which behave arbitrarily except falsifying their identifiers. The agents move in synchronous rounds and cannot leave any information on nodes. If the number of nodes n is given to agents, the existing fastest algorithm tolerates any number of weakly Byzantine agents and achieves gathering with simultaneous termination in O(n4·|Λgood|·X(n)) rounds, where |Λgood| is the length of the maximum ID of non-Byzantine agents and X(n) is the number of rounds required to explore any network composed of n nodes. In this paper, we ask the question of whether we can reduce the time complexity if we have a strong team, i.e., a team with a few Byzantine agents, because not so many agents are subject to faults in practice. We give a positive answer to this question by proposing two algorithms in the case where at least 4f2+9f+4 agents exist. Both the algorithms assume that the upper bound N of n is given to agents. The first algorithm achieves gathering with non-simultaneous termination in O((f+|&Lambdagood|)·X(N)) rounds. The second algorithm achieves gathering with simultaneous termination in O((f+|&Lambdaall|)·X(N)) rounds, where |&Lambdaall| is the length of the maximum ID of all agents. The second algorithm significantly reduces the time complexity compared to the existing one if n is given to agents and |&Lambdaall|=O(|&Lambdagood|) holds.

  • Fast Neighborhood Rendezvous

    Ryota EGUCHI  Naoki KITAMURA  Taisuke IZUMI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/12/17
      Vol:
    E105-D No:3
      Page(s):
    597-610

    In the rendezvous problem, two computing entities (called agents) located at different vertices in a graph have to meet at the same vertex. In this paper, we consider the synchronous neighborhood rendezvous problem, where the agents are initially located at two adjacent vertices. While this problem can be trivially solved in O(Δ) rounds (Δ is the maximum degree of the graph), it is highly challenging to reveal whether that problem can be solved in o(Δ) rounds, even assuming the rich computational capability of agents. The only known result is that the time complexity of O($O(sqrt{n})$) rounds is achievable if the graph is complete and agents are probabilistic, asymmetric, and can use whiteboards placed at vertices. Our main contribution is to clarify the situation (with respect to computational models and graph classes) admitting such a sublinear-time rendezvous algorithm. More precisely, we present two algorithms achieving fast rendezvous additionally assuming bounded minimum degree, unique vertex identifier, accessibility to neighborhood IDs, and randomization. The first algorithm runs within $ ilde{O}(sqrt{nDelta/delta} + n/delta)$ rounds for graphs of the minimum degree larger than $sqrt{n}$, where n is the number of vertices in the graph, and δ is the minimum degree of the graph. The second algorithm assumes that the largest vertex ID is O(n), and achieves $ ilde{O}left( rac{n}{sqrt{delta}} ight)$-round time complexity without using whiteboards. These algorithms attain o(Δ)-round complexity in the case of $delta = {omega}(sqrt{n} log n)$ and δ=ω(n2/3log4/3n) respectively. We also prove that four unconventional assumptions of our algorithm, bounded minimum degree, accessibility to neighborhood IDs, initial distance one, and randomization are all inherently necessary for attaining fast rendezvous. That is, one can obtain the Ω(n)-round lower bound if either one of them is removed.

  • An Adjustable Contention Window Management for Dense IEEE 802.11 Networks

    Chandra Sukanya NANDYALA  Sunggeun JIN  

     
    PAPER-Network

      Pubricized:
    2021/09/24
      Vol:
    E105-B No:3
      Page(s):
    270-274

    We propose a novel contention window management algorithm that adjusts contention window size in dense wireless network environments. In the algorithm, a station estimates the number of neighboring stations by observing its number of freezes while attempting wireless channel accesses. Then, station adopts a new contention window size for further frame transmissions. We evaluate the proposed algorithm with the NS-3 simulator. The simulation results show that our algorithm outperforms existing works in terms of delay, throughput, collision rate, and frame delivery ratio.

  • Two-Stage Belief Propagation Detection with MMSE Pre-Cancellation for Overloaded MIMO

    Risa SHIOI  Takashi IMAMURA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:3
      Page(s):
    309-317

    In this paper, two-stage BP detection is proposed for overloaded MIMO. The proposal combines BP with the MMSE pre-cancellation algorithm followed by normal BP detection. In overloaded MIMO systems, the loops in a factor graph degrade the demodulation performance of BP detection. MMSE pre-cancellation reduces the number of connections or coefficient values in the factor graph which improves the convergence characteristics of posteriori probabilities. Numerical results obtained through computer simulation show that the BERs of the proposed two-stage BP detection outperforms the conventional BP with MMSE pre-cancellation in a low bit energy range when the MMSE block size is four and the number of MMSE blocks is one. When the pre-cancellation is applied for complexity reduction, the proposed scheme reduces multiplication operations and summation operations by the same factor of 0.7 though the amount of the performance improvement to the conventional scheme is limited.

  • Finite Automata with Colored Accepting States and Their Unmixedness Problems

    Yoshiaki TAKAHASHI  Akira ITO  

     
    PAPER

      Pubricized:
    2021/11/01
      Vol:
    E105-D No:3
      Page(s):
    491-502

    Some textbooks of formal languages and automata theory implicitly state the structural equality of the binary n-dimensional de Bruijn graph and the state diagram of minimum state deterministic finite automaton which accepts regular language (0+1)*1(0+1)n-1. By introducing special finite automata whose accepting states are refined with two or more colors, we extend this fact to both k-ary versions. That is, we prove that k-ary n-dimensional de Brujin graph and the state diagram for minimum state deterministic colored finite automaton which accepts the (k-1)-tuple of the regular languages (0+1+…+k-1)*1(0+1+…+k-1)n-1,...,and(0+1+…+k-1)*(k-1)(0+1+…+k-1)n-1 are isomorphic for arbitrary k more than or equal to 2. We also investigate the properties of colored finite automata themselves and give computational complexity results on three decision problems concerning color unmixedness of nondeterminisitic ones.

  • Effectiveness of “Neither-Good-Nor-Bad” Information on User's Trust in Agents in Presence of Numerous Options

    Yuta SUZUMURA  Jun-ichi IMAI  

     
    PAPER

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:3
      Page(s):
    557-564

    The effect of provision of “Neither-Good-Nor-Bad” (NGNB) information on the perceived trustworthiness of agents has been investigated in previous studies. The experimental results have revealed several conditions under which the provision of NGNB information works effectively to make users perceive greater trust of agents. However, the experiments in question were carried out in a situation in which a user is able to choose, with the agent's advice, one of a limited number of options. In practical problems, we are often at a loss as to which to choose because there are too many possible options and it is not easy to narrow them down. Furthermore, in the above-mentioned previous studies, it was easy to predict the size of profits that a user would obtain because its pattern was also limited. This prompted us, in this paper, to investigate the effect of provision of NGNB information on the users' trust of agents under conditions where it appears to the users that numerous options are available. Our experimental results reveal that an agent that reliably provides NGNB information tends to gain greater user trust in a situation where it appears to the users that there are numerous options and their consequences, and it is not easy to predict the size of profits. However, in contradiction to the previous study, the results in this paper also reveal that stable provision of NGNB information in the context of numerous options is less effective in a situation where it is harder to obtain larger profits.

  • Macro Cell Switching of Transmit Antennas in Distributed Antenna Transmission

    Takahito TSUKAMOTO  Go OTSURU  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:3
      Page(s):
    302-308

    In this paper, a macro cell switching scheme for distributed antennas is proposed. In conventional distributed antenna transmission (DAT), the macro cell to which each antenna belongs is fixed. Though a cell-free system has been investigated because of its higher system throughput, the implementation cost of front-hauls can be excessive. To increase the flexibility of resource allocation in the DAT with moderate front-haul complexity, we propose the macro cell switching of distributed antennas (DAs). In the proposed scheme, DAs switch their attribution macro cells depending on the amount of pre-assigned connections. Numerical results obtained through computer simulation show that the proposed scheme realizes a better system throughput than the conventional system, especially when the number of user equipments (UEs) is smaller and the distance between DAs are larger.

  • An Equivalent Expression for the Wyner-Ziv Source Coding Problem Open Access

    Tetsunao MATSUTA  Tomohiko UYEMATSU  

     
    PAPER-Information Theory

      Pubricized:
    2021/09/09
      Vol:
    E105-A No:3
      Page(s):
    353-362

    We consider the coding problem for lossy source coding with side information at the decoder, which is known as the Wyner-Ziv source coding problem. The goal of the coding problem is to find the minimum rate such that the probability of exceeding a given distortion threshold is less than the desired level. We give an equivalent expression of the minimum rate by using the chromatic number and notions of covering of a set. This allows us to analyze the coding problem in terms of graph coloring and covering.

  • Boosting CPA to CCA2 for Leakage-Resilient Attribute-Based Encryption by Using New QA-NIZK Open Access

    Toi TOMITA  Wakaha OGATA  Kaoru KUROSAWA  

     
    PAPER

      Pubricized:
    2021/09/17
      Vol:
    E105-A No:3
      Page(s):
    143-159

    In this paper, we construct the first efficient leakage-resilient CCA2 (LR-CCA2)-secure attribute-based encryption (ABE) schemes. We also construct the first efficient LR-CCA2-secure identity-based encryption (IBE) scheme with optimal leakage rate. To obtain our results, we develop a new quasi-adaptive non-interactive zero-knowledge (QA-NIZK) argument for the ciphertext consistency of the LR-CPA-secure schemes. Our ABE schemes are obtained by boosting the LR-CPA-security of some existing schemes to the LR-CCA2-security by using our QA-NIZK arguments. The schemes are almost as efficient as the underlying LR-CPA-secure schemes.

921-940hit(21534hit)