The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

961-980hit(21534hit)

  • Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches

    Kosei SAKAMOTO  Kazuhiko MINEMATSU  Nao SHIBATA  Maki SHIGERI  Hiroyasu KUBO  Takanori ISOBE  

     
    PAPER

      Pubricized:
    2021/12/07
      Vol:
    E105-A No:3
      Page(s):
    278-288

    In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the required number of rounds to achieve the full diffusion when the branch number is up to 16. After that, Derbez et al. presented a class of 32-branch permutations that achieves the 9-round full diffusion and they prove that this is optimal. However, this class is not suitable to be used in Type-2 GFN because it requires a large number of rounds to ensure a sufficient number of active S-boxes. In this paper, we present how to find a good class of 32-branch permutations for Type-2 GFN. To achieve this goal, we convert Type-2 GFN into a LBlock-like structure, and then we evaluate the diffusion property and the resistance against major attacks, such as differential, linear, impossible differential and integral attacks by an MILP. As a result, we present a good class of 32-branch permutations that achieves the 10-round full diffusion, ensures differentially/linearly active S-boxes of 66 at 19 round, and has the 18/20-round impossible differential/integral distinguisher, respectively. The 32-branch permutation used in WARP was chosen among this class.

  • Upper Bounds on the Error Probability for the Ensemble of Linear Block Codes with Mismatched Decoding Open Access

    Toshihiro NIINOMI  Hideki YAGI  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Pubricized:
    2021/10/08
      Vol:
    E105-A No:3
      Page(s):
    363-371

    In channel decoding, a decoder with suboptimal metrics may be used because of the uncertainty of the channel statistics or the limitations of the decoder. In this case, the decoding metric is different from the actual channel metric, and thus it is called mismatched decoding. In this paper, applying the technique of the DS2 bound, we derive an upper bound on the error probability of mismatched decoding over a regular channel for the ensemble of linear block codes, which was defined by Hof, Sason and Shamai. Assuming the ensemble of random linear block codes defined by Gallager, we show that the obtained bound is not looser than the conventional bound. We also give a numerical example for the ensemble of LDPC codes also introduced by Gallager, which shows that our proposed bound is tighter than the conventional bound. Furthermore, we obtain a single letter error exponent for linear block codes.

  • Experimental Study of Fault Injection Attack on Image Sensor Interface for Triggering Backdoored DNN Models Open Access

    Tatsuya OYAMA  Shunsuke OKURA  Kota YOSHIDA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2021/10/26
      Vol:
    E105-A No:3
      Page(s):
    336-343

    A backdoor attack is a type of attack method inducing deep neural network (DNN) misclassification. An adversary mixes poison data, which consist of images tampered with adversarial marks at specific locations and of adversarial target classes, into a training dataset. The backdoor model classifies only images with adversarial marks into an adversarial target class and other images into the correct classes. However, the attack performance degrades sharply when the location of the adversarial marks is slightly shifted. An adversarial mark that induces the misclassification of a DNN is usually applied when a picture is taken, so the backdoor attack will have difficulty succeeding in the physical world because the adversarial mark position fluctuates. This paper proposes a new approach in which an adversarial mark is applied using fault injection on the mobile industry processor interface (MIPI) between an image sensor and the image recognition processor. Two independent attack drivers are electrically connected to the MIPI data lane in our attack system. While almost all image signals are transferred from the sensor to the processor without tampering by canceling the attack signal between the two drivers, the adversarial mark is injected into a given location of the image signal by activating the attack signal generated by the two attack drivers. In an experiment, the DNN was implemented on a Raspberry pi 4 to classify MNIST handwritten images transferred from the image sensor over the MIPI. The adversarial mark successfully appeared in a specific small part of the MNIST images using our attack system. The success rate of the backdoor attack using this adversarial mark was 91%, which is much higher than the 18% rate achieved using conventional input image tampering.

  • Spatial Vectors Effective for Nakagami-m Fading MIMO Channels Open Access

    Tatsumi KONISHI  Hiroyuki NAKANO  Yoshikazu YANO  Michihiro AOKI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/08/03
      Vol:
    E105-A No:3
      Page(s):
    428-432

    This letter proposes a transmission scheme called spatial vector (SV), which is effective for Nakagami-m fading multiple-input multiple-output channels. First, the analytical error rate of SV is derived for Nakagami-m fading MIMO channels. Next, an example of SV called integer SV (ISV) is introduced. The error performance was evaluated over Nakagami-m fading from m = 1 to m = 50 and compared with spatial modulation (SM), enhanced SM, and quadrature SM. The results show that for m > 1, ISV outperforms the SM schemes and is robust to m variations.

  • A 6.5Gb/s Shared Bus Using Electromagnetic Connectors for Downsizing and Lightening Satellite Processor System

    Atsutake KOSUGE  Mototsugu HAMADA  Tadahiro KURODA  

     
    PAPER

      Pubricized:
    2021/09/03
      Vol:
    E105-A No:3
      Page(s):
    478-486

    A 6.5Gb/s shared bus that uses a 65nm CMOS pulse transceiver chip with a low frequency equalizer and electromagnetic connectors based on two types of transmission line couplers is presented. The amount of backplane wiring is reduced by a factor of 1/16 and total connector volume by a factor of 1/246. It reduces the size and weight of a satellite processor system by 60%, increases the data rate by a factor of 2.6, and satisfies the EMC standard for withstanding the strong shock of rocket launch.

  • Low-Power Design Methodology of Voltage Over-Scalable Circuit with Critical Path Isolation and Bit-Width Scaling Open Access

    Yutaka MASUDA  Jun NAGAYAMA  TaiYu CHENG  Tohru ISHIHARA  Yoichi MOMIYAMA  Masanori HASHIMOTO  

     
    PAPER

      Pubricized:
    2021/08/31
      Vol:
    E105-A No:3
      Page(s):
    509-517

    This work proposes a design methodology that saves the power dissipation under voltage over-scaling (VOS) operation. The key idea of the proposed design methodology is to combine critical path isolation (CPI) and bit-width scaling (BWS) under the constraint of computational quality, e.g., Peak Signal-to-Noise Ratio (PSNR) in the image processing domain. Conventional CPI inherently cannot reduce the delay of intrinsic critical paths (CPs), which may significantly restrict the power saving effect. On the other hand, the proposed methodology tries to reduce both intrinsic and non-intrinsic CPs. Therefore, our design dramatically reduces the supply voltage and power dissipation while satisfying the quality constraint. Moreover, for reducing co-design exploration space, the proposed methodology utilizes the exclusiveness of the paths targeted by CPI and BWS, where CPI aims at reducing the minimum supply voltage of non-intrinsic CP, and BWS focuses on intrinsic CPs in arithmetic units. From this key exclusiveness, the proposed design splits the simultaneous optimization problem into three sub-problems; (1) the determination of bit-width reduction, (2) the timing optimization for non-intrinsic CPs, and (3) investigating the minimum supply voltage of the BWS and CPI-applied circuit under quality constraint, for reducing power dissipation. Thanks to the problem splitting, the proposed methodology can efficiently find quality-constrained minimum-power design. Evaluation results show that CPI and BWS are highly compatible, and they significantly enhance the efficacy of VOS. In a case study of a GPGPU processor, the proposed design saves the power dissipation by 42.7% with an image processing workload and by 51.2% with a neural network inference workload.

  • Register Minimization and its Application in Schedule Exploration for Area Minimization for Double Modular Redundancy LSI Design

    Yuya KITAZAWA  Kazuhito ITO  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-A No:3
      Page(s):
    530-539

    Double modular redundancy (DMR) is to execute an operation twice and detect a soft error by comparing the duplicated operation results. The soft error is corrected by re-executing necessary operations. The re-execution requires error-free input data and registers are needed to store such necessary error-free data. In this paper, a method to minimize the required number of registers is proposed where an appropriate subgraph partitioning of operation nodes are searched. In addition, using the proposed register minimization method, a minimization of the area of functional units and registers required to implement the DMR design is proposed.

  • Simultaneous Scheduling and Core-Type Optimization for Moldable Fork-Join Tasks on Heterogeneous Multicores

    Hiroki NISHIKAWA  Kana SHIMADA  Ittetsu TANIGUCHI  Hiroyuki TOMIYAMA  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-A No:3
      Page(s):
    540-548

    With the demand for energy-efficient and high- performance computing, multicore architecture has become more appealing than ever. Multicore task scheduling is one of domains in parallel computing which exploits the parallelism of multicore. Unlike traditional scheduling, multicore task scheduling has recently been studied on the assumption that tasks have inherent parallelism and can be split into multiple sub-tasks in data parallel fashion. However, it is still challenging to properly determine the degree of parallelism of tasks and mapping on multicores. Our proposed scheduling techniques determine the degree of parallelism of tasks, and sub-tasks are decided which type of cores to be assigned to heterogeneous multicores. In addition, two approaches to hardware/software codesign for heterogeneous multicore systems are proposed. The works optimize the types of cores organized in the architecture simultaneously with scheduling of the tasks such that the overall energy consumption is minimized under a deadline constraint, a warm start approach is also presented to effectively solve the problem. The experimental results show the simultaneous scheduling and core-type optimization technique remarkably reduces the energy consumption.

  • Generalization of Limit Theorems for Connected-(r, s)-out-of- (m, n):F Lattice Systems

    Koki YAMADA  Taishin NAKAMURA  Hisashi YAMAMOTO  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2021/09/13
      Vol:
    E105-A No:3
      Page(s):
    562-570

    In the field of reliability engineering, many studies on the relationship of reliability between components and the entire system have been conducted since the 1960s. Various properties of large-scale systems can be studied by limit theorems. In addition, the limit theorem can provide an approximate system reliability. Existing studies have established the limit theorems of a connected-(r, s)-out-of-(m, n):F lattice system consisting of components with the same reliability. However, the existing limit theorems are constrained in terms of (a) the system shape and (b) the condition under which the theorem can be applied. Therefore, this study generalizes the existing limit theorems along the two aforementioned directions. The limit theorem established in this paper can be useful for revealing the properties of the reliability of a large-scale connected-(r, s)-out-of-(m, n):F lattice system.

  • A Sparsely-Connected OTFS-BFDM System Using Message-Passing Decoding Open Access

    Tingyao WU  Zhisong BIE  Celimuge WU  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2021/08/27
      Vol:
    E105-A No:3
      Page(s):
    576-583

    The newly proposed orthogonal time frequency space (OTFS) system exhibits excellent error performance on high-Doppler fading channels. However, the rectangular prototype window function (PWF) inherent in OTFS leads to high out-of-band emission (OOBE), which reduces the spectral efficiency in multi-user scenarios. To this end, this paper presents an OTFS system based on bi-orthogonal frequency division multiplexing (OTFS-BFDM) modulation. In OTFS-BFDM systems, PWFs with bi-orthogonal properties can be optimized to provide lower OOBE than OTFS, which is a special case with rectangular PWF. We further derive that the OTFS-BFDM system is sparsely-connected so that the low-complexity message passing (MP) decoding algorithm can be adopted. Moreover, the power spectral density, peak to average power ratio (PAPR) and bit error rate (BER) of the OTFS-BFDM system with different PWFs are compared. Simulation results show that: i) the use of BFDM modulation significantly inhibits the OOBE of OTFS system; ii) the better the frequency-domain localization of PWFs, the smaller the BER and PAPR of OTFS-BFDM system.

  • Bicolored Path Embedding Problems Inspired by Protein Folding Models

    Tianfeng FENG  Ryuhei UEHARA  Giovanni VIGLIETTA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:3
      Page(s):
    623-633

    In this paper, we introduce a path embedding problem inspired by the well-known hydrophobic-polar (HP) model of protein folding. A graph is said bicolored if each vertex is assigned a label in the set {red, blue}. For a given bicolored path P and a given bicolored graph G, our problem asks whether we can embed P into G in such a way as to match the colors of the vertices. In our model, G represents a protein's “blueprint,” and P is an amino acid sequence that has to be folded to form (part of) G. We first show that the bicolored path embedding problem is NP-complete even if G is a rectangular grid (a typical scenario in protein folding models) and P and G have the same number of vertices. By contrast, we prove that the problem becomes tractable if the height of the rectangular grid G is constant, even if the length of P is independent of G. Our proof is constructive: we give a polynomial-time algorithm that computes an embedding (or reports that no embedding exists), which implies that the problem is in XP when parameterized according to the height of G. Additionally, we show that the problem of embedding P into a rectangular grid G in such a way as to maximize the number of red-red contacts is NP-hard. (This problem is directly inspired by the HP model of protein folding; it was previously known to be NP-hard if G is not given, and P can be embedded in any way on a grid.) Finally, we show that, given a bicolored graph G, the problem of constructing a path P that embeds in G maximizing red-red contacts is Poly-APX-hard.

  • A Polynomial Delay Algorithm for Enumerating 2-Edge-Connected Induced Subgraphs

    Taishu ITO  Yusuke SANO  Katsuhisa YAMANAKA  Takashi HIRAYAMA  

     
    PAPER

      Pubricized:
    2021/07/02
      Vol:
    E105-D No:3
      Page(s):
    466-473

    The problem of enumerating connected induced subgraphs of a given graph is classical and studied well. It is known that connected induced subgraphs can be enumerated in constant time for each subgraph. In this paper, we focus on highly connected induced subgraphs. The most major concept of connectivity on graphs is vertex connectivity. For vertex connectivity, some enumeration problem settings and enumeration algorithms have been proposed, such as k-vertex connected spanning subgraphs. In this paper, we focus on another major concept of graph connectivity, edge-connectivity. This is motivated by the problem of finding evacuation routes in road networks. In evacuation routes, edge-connectivity is important, since highly edge-connected subgraphs ensure multiple routes between two vertices. In this paper, we consider the problem of enumerating 2-edge-connected induced subgraphs of a given graph. We present an algorithm that enumerates 2-edge-connected induced subgraphs of an input graph G with n vertices and m edges. Our algorithm enumerates all the 2-edge-connected induced subgraphs in O(n3m|SG|) time, where SG is the set of the 2-edge-connected induced subgraphs of G. Moreover, by slightly modifying the algorithm, we have a O(n3m)-delay enumeration algorithm for 2-edge-connected induced subgraphs.

  • BlockCSDN: Towards Blockchain-Based Collaborative Intrusion Detection in Software Defined Networking

    Wenjuan LI  Yu WANG  Weizhi MENG  Jin LI  Chunhua SU  

     
    PAPER

      Pubricized:
    2021/09/16
      Vol:
    E105-D No:2
      Page(s):
    272-279

    To safeguard critical services and assets in a distributed environment, collaborative intrusion detection systems (CIDSs) are usually adopted to share necessary data and information among various nodes, and enhance the detection capability. For simplifying the network management, software defined networking (SDN) is an emerging platform that decouples the controller plane from the data plane. Intuitively, SDN can help lighten the management complexity in CIDSs, and a CIDS can protect the security of SDN. In practical implementation, trust management is an important approach to help identify insider attacks (or malicious nodes) in CIDSs, but the challenge is how to ensure the data integrity when evaluating the reputation of a node. Motivated by the recent development of blockchain technology, in this work, we design BlockCSDN — a framework of blockchain-based collaborative intrusion detection in SDN, and take the challenge-based CIDS as a study. The experimental results under both external and internal attacks indicate that using blockchain technology can benefit the robustness and security of CIDSs and SDN.

  • Improved Resolution Enhancement Technique for Broadband Illumination in Flat Panel Display Lithography Open Access

    Kanji SUZUKI  Manabu HAKKO  

     
    INVITED PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-C No:2
      Page(s):
    59-67

    In flat panel display (FPD) lithography, a high resolution and large depth of focus (DOF) are required. The demands for high throughput have necessitated the use of large glass plates and exposure areas, thereby increasing focal unevenness and reducing process latitude. Thus, a large DOF is needed, particularly for high-resolution lithography. To manufacture future high-definition displays, 1.0μm line and space (L/S) is predicted to be required, and a technique to achieve this resolution with adequate DOF is necessary. To improve the resolution and DOF, resolution enhancement techniques (RETs) have been introduced. RETs such as off-axis illumination (OAI) and phase-shift masks (PSMs) have been widely used in semiconductor lithography, which utilizes narrowband illumination. To effectively use RETs in FPD lithography, modification for broadband illumination is required because FPD lithography utilizes such illumination as exposure light. However, thus far, RETs for broadband illumination have not been studied. This study aimed to develop techniques to achieve 1.0μm L/S resolution with an acceptable DOF. To this end, this paper proposes a method that combines our previously developed RET, namely, divided spectrum illumination (DSI), with an attenuated PSM (Att. PSM). Theoretical observations and simulations present the design of a PSM for broadband illumination. The transmittance and phase shift, whose degree varies according to the wavelength, are determined in terms of aerial image contrast and resist loss. The design of DSI for an Att. PSM is also discussed considering image contrast, DOF, and illumination intensity. Finally, the exposure results of 1.0μm L/S using DSI and PSM techniques are shown, demonstrating that a PSM greatly improves the resist profile, and DSI enhances the DOF by approximately 30% compared to conventional OAI. Thus, DSI and PSMs can be used in practical applications for achieving 1.0μm L/S with sufficient DOF.

  • A Novel Method for Adaptive Beamforming under the Strong Interference Condition

    Zongli RUAN  Hongshu LIAO  Guobing QIAN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/08/02
      Vol:
    E105-A No:2
      Page(s):
    109-113

    In this letter, firstly, a novel adaptive beamformer using independent component analysis (ICA) algorithm is proposed. By this algorithm, the ambiguity of amplitude and phase resulted from blind source separation is removed utilizing the special structure of array manifolds matrix. However, there might exist great calibration error when the powers of interferences are far larger than that of desired signal at many applications such as sonar, radio astronomy, biomedical engineering and earthquake detection. As a result, this will lead to a significant reduction in separation performance. Then, a new method based on the combination of ICA and primary component analysis (PCA) is proposed to recover the desired signal's amplitude under strong interference. Finally, computer simulation is carried out to indicate the effectiveness of our methods. The simulation results show that the proposed methods can obtain higher SNR and more accurate power estimation of desired signal than diagonal loading sample matrix inversion (LSMI) and worst-case performance optimization (WCPO) method.

  • In-Band Full-Duplex-Applicable Area Expansion by Inter-User Interference Reduction Using Successive Interference Cancellation

    Shota MORI  Keiichi MIZUTANI  Hiroshi HARADA  

     
    PAPER

      Pubricized:
    2021/09/02
      Vol:
    E105-B No:2
      Page(s):
    168-176

    In-band full-duplex (IBFD) has been an attractive technology, which can theoretically double the spectral efficiency. However, when performing IBFD in the dynamic-duplex cellular (DDC) system, inter-user interference (IUI) deteriorates transmission performance in downlink (DL) communication and limits IBFD-applicable area and IBFD application ratio. In this paper, to expand the IBFD-applicable area and improve the IBFD application ratio, we propose an IUI reduction scheme using successive interference cancellation (SIC) for the DDC system. SIC can utilize the power difference and reduce the signal with the higher power. The effectiveness of the proposed scheme is evaluated by the computer simulation. The IUI reducing effect on the IBFD-inapplicable area is confirmed when the received power of the IUI is stronger than that of the desired signal at the user equipment for DL (DL-UE). The IBFD-inapplicable area within 95m from the DL-UE, where the IBFD does not work without the proposed scheme, can reduce by 43.6% from 52.8% to 9.2% by applying the proposed scheme. Moreover, the IBFD application ratio can improve by 24.6% from 69.5% to 94.1%.

  • Layerweaver+: A QoS-Aware Layer-Wise DNN Scheduler for Multi-Tenant Neural Processing Units

    Young H. OH  Yunho JIN  Tae Jun HAM  Jae W. LEE  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2021/11/11
      Vol:
    E105-D No:2
      Page(s):
    427-431

    Many cloud service providers employ specialized hardware accelerators, called neural processing units (NPUs), to accelerate deep neural networks (DNNs). An NPU scheduler is responsible for scheduling incoming user requests and required to satisfy the two, often conflicting, optimization goals: maximizing system throughput and satisfying quality-of-service (QoS) constraints (e.g., deadlines) of individual requests. We propose Layerweaver+, a low-cost layer-wise DNN scheduler for NPUs, which provides both high system throughput and minimal QoS violations. For a serving scenario based on the industry-standard MLPerf inference benchmark, Layerweaver+ significantly improves the system throughput by up to 266.7% over the baseline scheduler serving one DNN at a time.

  • Learning Pyramidal Feature Hierarchy for 3D Reconstruction

    Fairuz Safwan MAHAD  Masakazu IWAMURA  Koichi KISE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2021/11/16
      Vol:
    E105-D No:2
      Page(s):
    446-449

    Neural network-based three-dimensional (3D) reconstruction methods have produced promising results. However, they do not pay particular attention to reconstructing detailed parts of objects. This occurs because the network is not designed to capture the fine details of objects. In this paper, we propose a network designed to capture both the coarse and fine details of objects to improve the reconstruction of the fine parts of objects.

  • Multi-Party Electronic Contract Signing Protocol Based on Blockchain

    Tong ZHANG  Yujue WANG  Yong DING  Qianhong WU  Hai LIANG  Huiyong WANG  

     
    PAPER

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:2
      Page(s):
    264-271

    With the development of Internet technology, the demand for signing electronic contracts has been greatly increased. The electronic contract generated by the participants in an online way enjoys the same legal effect as paper contract. The fairness is the key issue in jointly signing electronic contracts by the involved participants, so that all participants can either get the same copy of the contract or nothing. Most existing solutions only focus on the fairness of electronic contract generation between two participants, where the digital signature can effectively guarantee the fairness of the exchange of electronic contracts and becomes the conventional technology in designing the contract signing protocol. In this paper, an efficient blockchain-based multi-party electronic contract signing (MECS) protocol is presented, which not only offers the fairness of electronic contract generation for multiple participants, but also allows each participant to aggregate validate the signed copy of others. Security analysis shows that the proposed MECS protocol enjoys unforgeability, non-repudiation and fairness of electronic contracts, and performance analysis demonstrates the high efficiency of our construction.

  • Toward Blockchain-Based Spoofing Defense for Controlled Optimization of Phases in Traffic Signal System

    Yingxiao XIANG  Chao LI  Tong CHEN  Yike LI  Endong TONG  Wenjia NIU  Qiong LI  Jiqiang LIU  Wei WANG  

     
    PAPER

      Pubricized:
    2021/09/13
      Vol:
    E105-D No:2
      Page(s):
    280-288

    Controlled optimization of phases (COP) is a core implementation in the future intelligent traffic signal system (I-SIG), which has been deployed and tested in countries including the U.S. and China. In such a system design, optimal signal control depends on dynamic traffic situation awareness via connected vehicles. Unfortunately, I-SIG suffers data spoofing from any hacked vehicle; in particular, the spoofing of the last vehicle can break the system and cause severe traffic congestion. Specifically, coordinated attacks on multiple intersections may even bring cascading failure of the road traffic network. To mitigate this security issue, a blockchain-based multi-intersection joint defense mechanism upon COP planning is designed. The major contributions of this paper are the following. 1) A blockchain network constituted by road-side units at multiple intersections, which are originally distributed and decentralized, is proposed to obtain accurate and reliable spoofing detection. 2) COP-oriented smart contract is implemented and utilized to ensure the credibility of spoofing vehicle detection. Thus, an I-SIG can automatically execute a signal planning scheme according to traffic information without spoofing data. Security analysis for the data spoofing attack is carried out to demonstrate the security. Meanwhile, experiments on the simulation platform VISSIM and Hyperledger Fabric show the efficiency and practicality of the blockchain-based defense mechanism.

961-980hit(21534hit)