The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

1161-1180hit(21534hit)

  • Effects of Initial Configuration on Attentive Tracking of Moving Objects Whose Depth in 3D Changes

    Anis Ur REHMAN  Ken KIHARA  Sakuichi OHTSUKA  

     
    PAPER-Vision

      Pubricized:
    2021/02/25
      Vol:
    E104-A No:9
      Page(s):
    1339-1344

    In daily reality, people often pay attention to several objects that change positions while being observed. In the laboratory, this process is investigated by a phenomenon known as multiple object tracking (MOT) which is a task that evaluates attentive tracking performance. Recent findings suggest that the attentional set for multiple moving objects whose depth changes in three dimensions from one plane to another is influenced by the initial configuration of the objects. When tracking objects, it is difficult for people to expand their attentional set to multiple-depth planes once attention has been focused on a single plane. However, less is known about people contracting their attentional set from multiple-depth planes to a single-depth plane. In two experiments, we examined tracking accuracy when four targets or four distractors, which were initially distributed on two planes, come together on one of the planes during an MOT task. The results from this study suggest that people have difficulty changing the depth range of their attention during attentive tracking, and attentive tracking performance depends on the initial attentional set based on the configuration prior to attentive tracking.

  • Applying K-SVD Dictionary Learning for EEG Compressed Sensing Framework with Outlier Detection and Independent Component Analysis Open Access

    Kotaro NAGAI  Daisuke KANEMOTO  Makoto OHKI  

     
    LETTER-Biometrics

      Pubricized:
    2021/03/01
      Vol:
    E104-A No:9
      Page(s):
    1375-1378

    This letter reports on the effectiveness of applying the K-singular value decomposition (SVD) dictionary learning to the electroencephalogram (EEG) compressed sensing framework with outlier detection and independent component analysis. Using the K-SVD dictionary matrix with our design parameter optimization, for example, at compression ratio of four, we improved the normalized mean square error value by 31.4% compared with that of the discrete cosine transform dictionary for CHB-MIT Scalp EEG Database.

  • Detection Algorithms for FBMC/OQAM Spatial Multiplexing Systems

    Kuei-Chiang LAI  Chi-Jen CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1172-1187

    In this paper, we address the problem of detector design in severely frequency-selective channels for spatial multiplexing systems that adopt filter bank multicarrier based on offset quadrature amplitude modulation (FBMC/OQAM) as the communication waveforms. We consider decision feedback equalizers (DFEs) that use multiple feedback filters to jointly cancel the post-cursor components of inter-symbol interference, inter-antenna interference, and, in some configuration, inter-subchannel interference. By exploiting the special structures of the correlation matrix and the staggered property of the FBMC/OQAM signals, we obtain an efficient method of computing the DFE coefficients that requires a smaller number of multiplications than the linear equalizer (LE) and conventional DFE do. The simulation results show that the proposed detectors considerably outperform the LE and conventional DFE at moderate-to-high signal-to-noise ratios.

  • Fabrication Process for Superconducting Digital Circuits Open Access

    Mutsuo HIDAKA  Shuichi NAGASAWA  

     
    INVITED PAPER

      Pubricized:
    2021/03/03
      Vol:
    E104-C No:9
      Page(s):
    405-410

    This review provides a current overview of the fabrication processes for superconducting digital circuits at CRAVITY (clean room for analog and digital superconductivity) at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. CRAVITY routinely fabricates superconducting digital circuits using three types of fabrication processes and supplies several thousand chips to its collaborators each year. Researchers at CRAVITY have focused on improving the controllability and uniformity of device parameters and the reliability, which means reducing defects. These three aspects are important for the correct operation of large-scale digital circuits. The current technologies used at CRAVITY permit ±10% controllability over the critical current density (Jc) of Josephson junctions (JJs) with respect to the design values, while the critical current (Ic) uniformity is within 1σ=2% for JJs with areas exceeding 1.0 µm2 and the defect density is on the order of one defect for every 100,000 JJs.

  • Design and Fabrication of PTFE Substrate Integrated Waveguide Coupler by SR Direct Etching Open Access

    Mitsuyoshi KISHIHARA  Masaya TAKEUCHI  Akinobu YAMAGUCHI  Yuichi UTSUMI  Isao OHTA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/03/15
      Vol:
    E104-C No:9
      Page(s):
    446-454

    The microfabrication technique based on synchrotron radiation (SR) direct etching process has recently been applied to construct PTFE microstructures. This paper proposes a PTFE substrate integrated waveguide (PTFE SIW). It is expected that the PTFE SIW contributes to the improvement of the structural strength. A rectangular through-hole is introduced taking the advantage of the SR direct etching process. First, a PTFE SIW for the Q-band is designed. Then, a cruciform 3-dB directional coupler consisting of the PTFE SIW is designed and fabricated by the SR direct etching process. The validity of the PTFE SIW coupler is confirmed by measuring the frequency characteristics of the S-parameters. The mechanical strength of the PTFE SIW and the peeling strength of its Au film are also additionally investigated.

  • Explanatory Rule Generation for Advanced Driver Assistant Systems

    Juha HOVI  Ryutaro ICHISE  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/11
      Vol:
    E104-D No:9
      Page(s):
    1427-1439

    Autonomous vehicles and advanced driver assistant systems (ADAS) are receiving notable attention as research fields in both academia and private industry. Some decision-making systems use sets of logical rules to map knowledge of the ego-vehicle and its environment into actions the ego-vehicle should take. However, such rulesets can be difficult to create — for example by manually writing them — due to the complexity of traffic as an operating environment. Furthermore, the building blocks of the rules must be defined. One common solution to this is using an ontology specifically aimed at describing traffic concepts and their hierarchy. These ontologies must have a certain expressive power to enable construction of useful rules. We propose a process of generating sets of explanatory rules for ADAS applications from data using ontology as a base vocabulary and present a ruleset generated as a result of our experiments that is correct for the scope of the experiment.

  • Feature Detection Based on Significancy of Local Features for Image Matching

    TaeWoo KIM  

     
    LETTER-Pattern Recognition

      Pubricized:
    2021/06/03
      Vol:
    E104-D No:9
      Page(s):
    1510-1513

    Feature detection and matching procedure require most of processing time in image matching where the time dramatically increases according to the number of feature points. The number of features is needed to be controlled for specific applications because of their processing time. This paper proposes a feature detection method based on significancy of local features. The feature significancy is computed for all pixels and higher significant features are chosen considering spatial distribution. The method contributes to reduce the number of features in order to match two images with maintaining high matching accuracy. It was shown that this approach was faster about two times in average processing time than FAST detector for natural scene images in the experiments.

  • Physical Cell ID Detection Probability Using NB-IoT Synchronization Signals in 28-GHz Band

    Daisuke INOUE  Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1110-1119

    This paper presents the physical-layer cell identity (PCID) detection probability using the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS) based on the narrowband Internet-of-Things (NB-IoT) radio interface considering frequency offset and the maximum Doppler frequency in the 28-GHz band. Simulation results show that the autocorrelation based NPSS detection method is more effective than the cross-correlation based NPSS detection using frequency offset estimation and compensation before the NPSS received timing detection from the viewpoints of PCID detection probability and computational complexity. We also show that when using autocorrelation based NPSS detection, the loss in the PCID detection probability at the carrier frequency of fc =28GHz compared to that for fc =3.5GHz is only approximately 5% at the average received signal-to-noise ratio (SNR) of 0dB when the frequency stability of a local oscillator of a user equipment (UE) set is 20ppm. Therefore, we conclude that the multiplexing schemes and sequences of NPSS and NSSS based on the NB-IoT radio interface associated with autocorrelation based NPSS detection will support the 28-GHz frequency spectra.

  • Achieving Pairing-Free Aggregate Signatures using Pre-Communication between Signers

    Kaoru TAKEMURE  Yusuke SAKAI  Bagus SANTOSO  Goichiro HANAOKA  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/06/10
      Vol:
    E104-A No:9
      Page(s):
    1188-1205

    Most aggregate signature schemes are relying on pairings, but high computational and storage costs of pairings limit the feasibility of those schemes in practice. Zhao proposed the first pairing-free aggregate signature scheme (AsiaCCS 2019). However, the security of Zhao's scheme is based on the hardness of a newly introduced non-standard computational problem. The recent impossibility results of Drijvers et al. (IEEE S&P 2019) on two-round pairing-free multi-signature schemes whose security based on the standard discrete logarithm (DL) problem have strengthened the view that constructing a pairing-free aggregate signature scheme which is proven secure based on standard problems such as DL problem is indeed a challenging open problem. In this paper, we offer a novel solution to this open problem. We introduce a new paradigm of aggregate signatures, i.e., aggregate signatures with an additional pre-communication stage. In the pre-communication stage, each signer interacts with the aggregator to agree on a specific random value before deciding messages to be signed. We also discover that the impossibility results of Drijvers et al. take effect if the adversary can decide the whole randomness part of any individual signature. Based on the new paradigm and our discovery of the applicability of the impossibility result, we propose a pairing-free aggregate signature scheme such that any individual signature includes a random nonce which can be freely generated by the signer. We prove the security of our scheme based on the hardness of the standard DL problem. As a trade-off, in contrast to the plain public-key model, which Zhao's scheme uses, we employ a more restricted key setup model, i.e., the knowledge of secret-key model.

  • Realization of Multi-Terminal Universal Interconnection Networks Using Contact Switches

    Tsutomu SASAO  Takashi MATSUBARA  Katsufumi TSUJI  Yoshiaki KOGA  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:8
      Page(s):
    1068-1075

    A universal interconnection network implements arbitrary interconnections among n terminals. This paper considers a problem to realize such a network using contact switches. When n=2, it can be implemented with a single switch. The number of different connections among n terminals is given by the Bell number B(n). The Bell number shows the total number of methods to partition n distinct elements. For n=2, 3, 4, 5 and 6, the corresponding Bell numbers are 2, 5, 15, 52, and 203, respectively. This paper shows a method to realize an n terminal universal interconnection network with $ rac {3}{8}(n^2-1)$ contact switches when n=2m+1≥5, and $ rac {n}{8}(3n+2)$ contact switches, when n=2m≥6. Also, it shows that a lower bound on the number of contact switches to realize an n-terminal universal interconnection network is ⌈log 2B(n)⌉, where B(n) is the Bell number.

  • An Improved Method of LIME for a Low-Light Image Containing Bright Regions

    Seiichi KOJIMA  Noriaki SUETAKE  

     
    LETTER-Image

      Pubricized:
    2021/02/17
      Vol:
    E104-A No:8
      Page(s):
    1088-1092

    LIME is a method for low-light image enhancement. Though LIME significantly enhances the contrast in dark regions, the effect of contrast enhancement tends to be insufficient in bright regions. In this letter, we propose an improved method of LIME. In the proposed method, the contrast in bright regions are improved while maintaining the contrast enhancement effect in dark regions.

  • Hybrid Electrical/Optical Switch Architectures for Training Distributed Deep Learning in Large-Scale

    Thao-Nguyen TRUONG  Ryousei TAKANO  

     
    PAPER-Information Network

      Pubricized:
    2021/04/23
      Vol:
    E104-D No:8
      Page(s):
    1332-1339

    Data parallelism is the dominant method used to train deep learning (DL) models on High-Performance Computing systems such as large-scale GPU clusters. When training a DL model on a large number of nodes, inter-node communication becomes bottle-neck due to its relatively higher latency and lower link bandwidth (than intra-node communication). Although some communication techniques have been proposed to cope with this problem, all of these approaches target to deal with the large message size issue while diminishing the effect of the limitation of the inter-node network. In this study, we investigate the benefit of increasing inter-node link bandwidth by using hybrid switching systems, i.e., Electrical Packet Switching and Optical Circuit Switching. We found that the typical data-transfer of synchronous data-parallelism training is long-lived and rarely changed that can be speed-up with optical switching. Simulation results on the Simgrid simulator show that our approach speed-up the training time of deep learning applications, especially in a large-scale manner.

  • Consumption Pricing Mechanism of Scientific and Technological Resources Based on Multi-Agent Game Theory: An Interactive Analytical Model and Experimental Validation

    Fanying ZHENG  Fu GU  Yangjian JI  Jianfeng GUO  Xinjian GU  Jin ZHANG  

     
    PAPER

      Pubricized:
    2021/04/16
      Vol:
    E104-D No:8
      Page(s):
    1292-1301

    In the context of Web 2.0, the interaction between users and resources is more and more frequent in the process of resource sharing and consumption. However, the current research on resource pricing mainly focuses on the attributes of the resource itself, and does not weigh the interests of the resource sharing participants. In order to deal with these problems, the pricing mechanism of resource-user interaction evaluation based on multi-agent game theory is established in this paper. Moreover, the user similarity, the evaluation bias based on link analysis and punishment of academic group cheating are also included in the model. Based on the data of 181 scholars and 509 articles from the Wanfang database, this paper conducts 5483 pricing experiments for 13 months, and the results show that this model is more effective than other pricing models - the pricing accuracy of resource resources is 94.2%, and the accuracy of user value evaluation is 96.4%. Besides, this model can intuitively show the relationship within users and within resources. The case study also exhibits that the user's knowledge level is not positively correlated with his or her authority. Discovering and punishing academic group cheating is conducive to objectively evaluating researchers and resources. The pricing mechanism of scientific and technological resources and the users proposed in this paper is the premise of fair trade of scientific and technological resources.

  • Tight Upper Bound on the Bit Error Rate of Convolutional Codes over Correlated Nakagami-m Fading Channels

    Seongah JEONG  Jinkyu KANG  Hoojin LEE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/02/08
      Vol:
    E104-A No:8
      Page(s):
    1080-1083

    In this letter, we investigate tight analytical and asymptotic upper bounds for bit error rate (BER) of constitutional codes over exponentially correlated Nakagami-m fading channels. Specifically, we derive the BER expression depending on an exact closed-form formula for pairwise error event probabilities (PEEP). Moreover, the corresponding asymptotic analysis in high signal-to-noise ratio (SNR) regime is also explored, which is verified via numerical results. This allows us to have explicit insights on the achievable coding gain and diversity order.

  • An Efficient Aircraft Boarding Strategy Considering Implementation

    Kenji UEHARA  Kunihiko HIRAISHI  Kokolo IKEDA  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2021/01/22
      Vol:
    E104-A No:8
      Page(s):
    1051-1058

    Boarding is the last step of aircraft turnaround and its completion in the shortest possible time is desired. In this paper, we propose a new boarding strategy that outperforms conventional strategies such as the back-to-front strategy and the outside-in strategy. The Steffen method is known as one of the most efficient boarding strategies in literature, but it is hard to be realized in the real situation because the complete sorting of passengers in a prescribed order is required. The proposed strategy shows a performance close to that of the Steffen method and can be easily implemented by using a special gate system.

  • Capsule Network with Shortcut Routing Open Access

    Thanh Vu DANG  Hoang Trong VO  Gwang Hyun YU  Jin Young KIM  

     
    PAPER-Image

      Pubricized:
    2021/01/27
      Vol:
    E104-A No:8
      Page(s):
    1043-1050

    Capsules are fundamental informative units that are introduced into capsule networks to manipulate the hierarchical presentation of patterns. The part-hole relationship of an entity is learned through capsule layers, using a routing-by-agreement mechanism that is approximated by a voting procedure. Nevertheless, existing routing methods are computationally inefficient. We address this issue by proposing a novel routing mechanism, namely “shortcut routing”, that directly learns to activate global capsules from local capsules. In our method, the number of operations in the routing procedure is reduced by omitting the capsules in intermediate layers, resulting in lighter routing. To further address the computational problem, we investigate an attention-based approach, and propose fuzzy coefficients, which have been found to be efficient than mixture coefficients from EM routing. Our method achieves on-par classification results on the Mnist (99.52%), smallnorb (93.91%), and affNist (89.02%) datasets. Compared to EM routing, our fuzzy-based and attention-based routing methods attain reductions of 1.42 and 2.5 in terms of the number of calculations.

  • Optimization and Combination of Scientific and Technological Resource Services Based on Multi-Community Collaborative Search

    Yida HONG  Yanlei YIN  Cheng GUO  Xiaobao LIU  

     
    PAPER

      Pubricized:
    2021/05/06
      Vol:
    E104-D No:8
      Page(s):
    1313-1320

    Many scientific and technological resources (STR) cannot meet the needs of real demand-based industrial services. To address this issue, the characteristics of scientific and technological resource services (STRS) are analyzed, and a method of the optimal combination of demand-based STR based on multi-community collaborative search is then put forward. An optimal combined evaluative system that includes various indexes, namely response time, innovation, composability, and correlation, is developed for multi-services of STR, and a hybrid optimal combined model for STR is constructed. An evaluative algorithm of multi-community collaborative search is used to study the interactions between general communities and model communities, thereby improving the adaptive ability of the algorithm to random dynamic resource services. The average convergence value CMCCSA=0.00274 is obtained by the convergence measurement function, which exceeds other comparison algorithms. The findings of this study indicate that the proposed methods can preferably reach the maximum efficiency of demand-based STR, and new ideas and methods for implementing demand-based real industrial services for STR are provided.

  • Cross-Domain Energy Consumption Prediction via ED-LSTM Networks

    Ye TAO  Fang KONG  Wenjun JU  Hui LI  Ruichun HOU  

     
    PAPER

      Pubricized:
    2021/05/11
      Vol:
    E104-D No:8
      Page(s):
    1204-1213

    As an important type of science and technology service resource, energy consumption data play a vital role in the process of value chain integration between home appliance manufacturers and the state grid. Accurate electricity consumption prediction is essential for demand response programs in smart grid planning. The vast majority of existing prediction algorithms only exploit data belonging to a single domain, i.e., historical electricity load data. However, dependencies and correlations may exist among different domains, such as the regional weather condition and local residential/industrial energy consumption profiles. To take advantage of cross-domain resources, a hybrid energy consumption prediction framework is presented in this paper. This framework combines the long short-term memory model with an encoder-decoder unit (ED-LSTM) to perform sequence-to-sequence forecasting. Extensive experiments are conducted with several of the most commonly used algorithms over integrated cross-domain datasets. The results indicate that the proposed multistep forecasting framework outperforms most of the existing approaches.

  • Logarithmic Regret for Distributed Online Subgradient Method over Unbalanced Directed Networks

    Makoto YAMASHITA  Naoki HAYASHI  Takeshi HATANAKA  Shigemasa TAKAI  

     
    PAPER-Systems and Control

      Pubricized:
    2021/02/04
      Vol:
    E104-A No:8
      Page(s):
    1019-1026

    This paper investigates a constrained distributed online optimization problem over strongly connected communication networks, where a local cost function of each agent varies in time due to environmental factors. We propose a distributed online projected subgradient method over unbalanced directed networks. The performance of the proposed method is evaluated by a regret which is defined by the error between the cumulative cost over time and the cost of the optimal strategy in hindsight. We show that a logarithmic regret bound can be achieved for strongly convex cost functions. We also demonstrate the validity of the proposed method through a numerical example on distributed estimation over a diffusion field.

  • A Business Service Model of Smart Home Appliances Participating in the Peak Shaving and Valley Filling Based on Cloud Platform

    Mingrui ZHU  Yangjian JI  Wenjun JU  Xinjian GU  Chao LIU  Zhifang XU  

     
    PAPER

      Pubricized:
    2021/04/22
      Vol:
    E104-D No:8
      Page(s):
    1185-1194

    With the development of power market demand response capability, load aggregators play a more important role in the coordination between power grid and users. They have a wealth of user side business data resources related to user demand, load management and equipment operation. By building a business model of business data resource utilization and innovating the content and mode of intelligent power service, it can guide the friendly interaction between power supply, power grid and load, effectively improve the flexibility of power grid regulation, speed up demand response and refine load management. In view of the current situation of insufficient utilization of business resources, low user participation and imperfect business model, this paper analyzes the process of home appliance enterprises participating in peak shaving and valley filling (PSVF) as load aggregators, and expounds the relationship between the participants in the power market; a business service model of smart home appliance participating in PSVF based on cloud platform is put forward; the market value created by home appliance business resources for each participant under the joint action of market-oriented means, information technology and power consumption technology is discussed, and typical business scenarios are listed; taking Haier business resource analysis as an example, the feasibility of the proposed business model in innovating the content and value realization of intelligent power consumption services is proved.

1161-1180hit(21534hit)