The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

1061-1080hit(21534hit)

  • A Design of Automated Vulnerability Information Management System for Secure Use of Internet-Connected Devices Based on Internet-Wide Scanning Methods

    Taeeun KIM  Hwankuk KIM  

     
    PAPER

      Pubricized:
    2021/08/02
      Vol:
    E104-D No:11
      Page(s):
    1805-1813

    Any Internet-connected device is vulnerable to being hacked and misused. Hackers can find vulnerable IoT devices, infect malicious codes, build massive IoT botnets, and remotely control IoT devices through C&C servers. Many studies have been attempted to apply various security features on IoT devices to prevent IoT devices from being exploited by attackers. However, unlike high-performance PCs, IoT devices are lightweight, low-power, and low-cost devices and have limitations on performance of processing and memory, making it difficult to install heavy security functions. Instead of access to applying security functions on IoT devices, Internet-wide scanning (e.g., Shodan) studies have been attempted to quickly discover and take security measures massive IoT devices with weak security. Over the Internet, scanning studies remotely also exist realistic limitations such as low accuracy in analyzing security vulnerabilities due to a lack of device information or filtered by network security devices. In this paper, we propose a system for remotely collecting information from Internet-connected devices and using scanning techniques to identify and manage vulnerability information from IoT devices. The proposed system improves the open-source Zmap engine to solve a realistic problem when attempting to scan through real Internet. As a result, performance measurements show equal or superior results compared to previous Shodan, Zmap-based scanning.

  • Verifiable Credential Proof Generation and Verification Model for Decentralized SSI-Based Credit Scoring Data

    Kang Woo CHO  Byeong-Gyu JEONG  Sang Uk SHIN  

     
    PAPER

      Pubricized:
    2021/07/27
      Vol:
    E104-D No:11
      Page(s):
    1857-1868

    The continuous development of the mobile computing environment has led to the emergence of fintech to enable convenient financial transactions in this environment. Previously proposed financial identity services mostly adopted centralized servers that are prone to single-point-of-failure problems and performance bottlenecks. Blockchain-based self-sovereign identity (SSI), which emerged to address this problem, is a technology that solves centralized problems and allows decentralized identification. However, the verifiable credential (VC), a unit of SSI data transactions, guarantees unlimited right to erasure for self-sovereignty. This does not suit the specificity of the financial transaction network, which requires the restriction of the right to erasure for credit evaluation. This paper proposes a model for VC generation and revocation verification for credit scoring data. The proposed model includes double zero knowledge - succinct non-interactive argument of knowledge (zk-SNARK) proof in the VC generation process between the holder and the issuer. In addition, cross-revocation verification takes place between the holder and the verifier. As a result, the proposed model builds a trust platform among the holder, issuer, and verifier while maintaining the decentralized SSI attributes and focusing on the VC life cycle. The model also improves the way in which credit evaluation data are processed as VCs by granting opt-in and the special right to erasure.

  • An Efficient Public Verifiable Certificateless Multi-Receiver Signcryption Scheme for IoT Environments

    Dae-Hwi LEE  Won-Bin KIM  Deahee SEO  Im-Yeong LEE  

     
    PAPER

      Pubricized:
    2021/07/14
      Vol:
    E104-D No:11
      Page(s):
    1869-1879

    Lightweight cryptographic systems for services delivered by the recently developed Internet of Things (IoT) are being continuously researched. However, existing Public Key Infrastructure (PKI)-based cryptographic algorithms are difficult to apply to IoT services delivered using lightweight devices. Therefore, encryption, authentication, and signature systems based on Certificateless Public Key Cryptography (CL-PKC), which are lightweight because they do not use the certificates of existing PKI-based cryptographic algorithms, are being studied. Of the various public key cryptosystems, signcryption is efficient, and ensures integrity and confidentiality. Recently, CL-based signcryption (CL-SC) schemes have been intensively studied, and a multi-receiver signcryption (MRSC) protocol for environments with multiple receivers, i.e., not involving end-to-end communication, has been proposed. However, when using signcryption, confidentiality and integrity may be violated by public key replacement attacks. In this paper, we develop an efficient CL-based MRSC (CL-MRSC) scheme using CL-PKC for IoT environments. Existing signcryption schemes do not offer public verifiability, which is required if digital signatures are used, because only the receiver can verify the validity of the message; sender authenticity is not guaranteed by a third party. Therefore, we propose a CL-MRSC scheme in which communication participants (such as the gateways through which messages are transmitted) can efficiently and publicly verify the validity of encrypted messages.

  • Provable-Security Analysis of Authenticated Encryption Based on Lesamnta-LW in the Ideal Cipher Model

    Shoichi HIROSE  Hidenori KUWAKADO  Hirotaka YOSHIDA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:11
      Page(s):
    1894-1901

    Hirose, Kuwakado and Yoshida proposed a nonce-based authenticated encryption scheme Lae0 based on Lesamnta-LW in 2019. Lesamnta-LW is a block-cipher-based iterated hash function included in the ISO/IEC 29192-5 lightweight hash-function standard. They also showed that Lae0 satisfies both privacy and authenticity if the underlying block cipher is a pseudorandom permutation. Unfortunately, their result implies only about 64-bit security for instantiation with the dedicated block cipher of Lesamnta-LW. In this paper, we analyze the security of Lae0 in the ideal cipher model. Our result implies about 120-bit security for instantiation with the block cipher of Lesamnta-LW.

  • CoLaFUZE: Coverage-Guided and Layout-Aware Fuzzing for Android Drivers

    Tianshi MU  Huabing ZHANG  Jian WANG  Huijuan LI  

     
    PAPER

      Pubricized:
    2021/07/28
      Vol:
    E104-D No:11
      Page(s):
    1902-1912

    With the commercialization of 5G mobile phones, Android drivers are increasing rapidly to utilize a large quantity of newly emerging feature-rich hardware. Most of these drivers are developed by third-party vendors and lack proper vulnerabilities review, posing a number of new potential risks to security and privacy. However, the complexity and diversity of Android drivers make the traditional analysis methods inefficient. For example, the driver-specific argument formats make traditional syscall fuzzers difficult to generate valid inputs, the pointer-heavy code makes static analysis results incomplete, and pointer casting hides the actual type. Triggering code deep in Android drivers remains challenging. We present CoLaFUZE, a coverage-guided and layout-aware fuzzing tool for automatically generating valid inputs and exploring the driver code. CoLaFUZE employs a kernel module to capture the data copy operation and redirect it to the fuzzing engine, ensuring that the correct size of the required data is transferred to the driver. CoLaFUZE leverages dynamic analysis and symbolic execution to recover the driver interfaces and generates valid inputs for the interfaces. Furthermore, the seed mutation module of CoLaFUZE leverages coverage information to achieve better seed quality and expose bugs deep in the driver. We evaluate CoLaFUZE on 5 modern Android mobile phones from the top vendors, including Google, Xiaomi, Samsung, Sony, and Huawei. The results show that CoLaFUZE can explore more code coverage compared with the state-of-the-art fuzzer, and CoLaFUZE successfully found 11 vulnerabilities in the testing devices.

  • Speech Paralinguistic Approach for Detecting Dementia Using Gated Convolutional Neural Network

    Mariana RODRIGUES MAKIUCHI  Tifani WARNITA  Nakamasa INOUE  Koichi SHINODA  Michitaka YOSHIMURA  Momoko KITAZAWA  Kei FUNAKI  Yoko EGUCHI  Taishiro KISHIMOTO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/08/03
      Vol:
    E104-D No:11
      Page(s):
    1930-1940

    We propose a non-invasive and cost-effective method to automatically detect dementia by utilizing solely speech audio data. We extract paralinguistic features for a short speech segment and use Gated Convolutional Neural Networks (GCNN) to classify it into dementia or healthy. We evaluate our method on the Pitt Corpus and on our own dataset, the PROMPT Database. Our method yields the accuracy of 73.1% on the Pitt Corpus using an average of 114 seconds of speech data. In the PROMPT Database, our method yields the accuracy of 74.7% using 4 seconds of speech data and it improves to 80.8% when we use all the patient's speech data. Furthermore, we evaluate our method on a three-class classification problem in which we included the Mild Cognitive Impairment (MCI) class and achieved the accuracy of 60.6% with 40 seconds of speech data.

  • Smaller Residual Network for Single Image Depth Estimation

    Andi HENDRA  Yasushi KANAZAWA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/08/17
      Vol:
    E104-D No:11
      Page(s):
    1992-2001

    We propose a new framework for estimating depth information from a single image. Our framework is relatively small and straightforward by employing a two-stage architecture: a residual network and a simple decoder network. Our residual network in this paper is a remodeled of the original ResNet-50 architecture, which consists of only thirty-eight convolution layers in the residual block following by pair of two up-sampling and layers. While the simple decoder network, stack of five convolution layers, accepts the initial depth to be refined as the final output depth. During training, we monitor the loss behavior and adjust the learning rate hyperparameter in order to improve the performance. Furthermore, instead of using a single common pixel-wise loss, we also compute loss based on gradient-direction, and their structure similarity. This setting in our network can significantly reduce the number of network parameters, and simultaneously get a more accurate image depth map. The performance of our approach has been evaluated by conducting both quantitative and qualitative comparisons with several prior related methods on the publicly NYU and KITTI datasets.

  • Synthetic Scene Character Generator and Ensemble Scheme with the Random Image Feature Method for Japanese and Chinese Scene Character Recognition

    Fuma HORIE  Hideaki GOTO  Takuo SUGANUMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:11
      Page(s):
    2002-2010

    Scene character recognition has been intensively investigated for a couple of decades because it has a great potential in many applications including automatic translation, signboard recognition, and reading assistance for the visually-impaired. However, scene characters are difficult to recognize at sufficient accuracy owing to various noise and image distortions. In addition, Japanese scene character recognition is more challenging and requires a large amount of character data for training because thousands of character classes exist in the language. Some researchers proposed training data augmentation techniques using Synthetic Scene Character Data (SSCD) to compensate for the shortage of training data. In this paper, we propose a Random Filter which is a new method for SSCD generation, and introduce an ensemble scheme with the Random Image Feature (RI-Feature) method. Since there has not been a large Japanese scene character dataset for the evaluation of the recognition systems, we have developed an open dataset JPSC1400, which consists of a large number of real Japanese scene characters. It is shown that the accuracy has been improved from 70.9% to 83.1% by introducing the RI-Feature method to the ensemble scheme.

  • Detecting Depression from Speech through an Attentive LSTM Network

    Yan ZHAO  Yue XIE  Ruiyu LIANG  Li ZHANG  Li ZHAO  Chengyu LIU  

     
    LETTER-Speech and Hearing

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:11
      Page(s):
    2019-2023

    Depression endangers people's health conditions and affects the social order as a mental disorder. As an efficient diagnosis of depression, automatic depression detection has attracted lots of researcher's interest. This study presents an attention-based Long Short-Term Memory (LSTM) model for depression detection to make full use of the difference between depression and non-depression between timeframes. The proposed model uses frame-level features, which capture the temporal information of depressive speech, to replace traditional statistical features as an input of the LSTM layers. To achieve more multi-dimensional deep feature representations, the LSTM output is then passed on attention layers on both time and feature dimensions. Then, we concat the output of the attention layers and put the fused feature representation into the fully connected layer. At last, the fully connected layer's output is passed on to softmax layer. Experiments conducted on the DAIC-WOZ database demonstrate that the proposed attentive LSTM model achieves an average accuracy rate of 90.2% and outperforms the traditional LSTM network and LSTM with local attention by 0.7% and 2.3%, respectively, which indicates its feasibility.

  • Multi-Rate Switched Pinning Control for Velocity Control of Vehicle Platoons Open Access

    Takuma WAKASA  Kenji SAWADA  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1461-1469

    This paper proposes a switched pinning control method with a multi-rating mechanism for vehicle platoons. The platoons are expressed as multi-agent systems consisting of mass-damper systems in which pinning agents receive target velocities from external devices (ex. intelligent traffic signals). We construct model predictive control (MPC) algorithm that switches pinning agents via mixed-integer quadratic programmings (MIQP) problems. The optimization rate is determined according to the convergence rate to the target velocities and the inter-vehicular distances. This multi-rating mechanism can reduce the computational load caused by iterative calculation. Numerical results demonstrate that our method has a reduction effect on the string instability by selecting the pinning agents to minimize errors of the inter-vehicular distances to the target distances.

  • Distributed Optimal Estimation with Scalable Communication Cost

    Ryosuke ADACHI  Yuh YAMASHITA  Koichi KOBAYASHI  

     
    PAPER

      Pubricized:
    2021/05/18
      Vol:
    E104-A No:11
      Page(s):
    1470-1476

    This paper addresses distributed optimal estimation over wireless sensor networks with scalable communications. For realizing scalable communication, a data-aggregation method is introduced. Since our previously proposed method cannot guarantee the global optimality of each estimator, a modified protocol is proposed. A modification of the proposed method is that weights are introduced in the data aggregation. For selecting the weight values in the data aggregation, a redundant output reduction method with minimum covariance is discussed. Based on the proposed protocol, all estimators can calculate the optimal estimate. Finally, numerical simulations show that the proposed method can realize both the scalability of communication and high accuracy estimation.

  • A Reconfigurable 74-140Mbps LDPC Decoding System for CCSDS Standard

    Yun CHEN  Jimin WANG  Shixian LI  Jinfou XIE  Qichen ZHANG  Keshab K. PARHI  Xiaoyang ZENG  

     
    PAPER

      Pubricized:
    2021/05/25
      Vol:
    E104-A No:11
      Page(s):
    1509-1515

    Accumulate Repeat-4 Jagged-Accumulate (AR4JA) codes, which are channel codes designed for deep-space communications, are a series of QC-LDPC codes. Structures of these codes' generator matrix can be exploited to design reconfigurable encoders. To make the decoder reconfigurable and achieve shorter convergence time, turbo-like decoding message passing (TDMP) is chosen as the hardware decoder's decoding schedule and normalized min-sum algorithm (NMSA) is used as decoding algorithm to reduce hardware complexity. In this paper, we propose a reconfigurable decoder and present its FPGA implementation results. The decoder can achieve throughput greater than 74 Mbps.

  • A Two-Stage Hardware Trojan Detection Method Considering the Trojan Probability of Neighbor Nets

    Kento HASEGAWA  Tomotaka INOUE  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1516-1525

    Due to the rapid growth of the information industry, various Internet of Things (IoT) devices have been widely used in our daily lives. Since the demand for low-cost and high-performance hardware devices has increased, malicious third-party vendors may insert malicious circuits into the products to degrade their performance or to leak secret information stored at the devices. The malicious circuit surreptitiously inserted into the hardware products is known as a ‘hardware Trojan.’ How to detect hardware Trojans becomes a significant concern in recent hardware production. In this paper, we propose a hardware Trojan detection method that employs two-stage neural networks and effectively utilizes the Trojan probability of neighbor nets. At the first stage, the 11 Trojan features are extracted from the nets in a given netlist, and then we estimate the Trojan probability that shows the probability of the Trojan nets. At the second stage, we learn the Trojan probability of the neighbor nets for each net in the netlist and classify the nets into a set of normal nets and Trojan ones. The experimental results demonstrate that the average true positive rate becomes 83.6%, and the average true negative rate becomes 96.5%, which is sufficiently high compared to the existing methods.

  • An Anomalous Behavior Detection Method Utilizing Extracted Application-Specific Power Behaviors

    Kazunari TAKASAKI  Ryoichi KIDA  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-A No:11
      Page(s):
    1555-1565

    With the widespread use of Internet of Things (IoT) devices in recent years, we utilize a variety of hardware devices in our daily life. On the other hand, hardware security issues are emerging. Power analysis is one of the methods to detect anomalous behaviors, but it is hard to apply it to IoT devices where an operating system and various software programs are running. In this paper, we propose an anomalous behavior detection method for an IoT device by extracting application-specific power behaviors. First, we measure power consumption of an IoT device, and obtain the power waveform. Next, we extract an application-specific power waveform by eliminating a steady factor from the obtained power waveform. Finally, we extract feature values from the application-specific power waveform and detect an anomalous behavior by utilizing the local outlier factor (LOF) method. We conduct two experiments to show how our proposed method works: one runs three application programs and an anomalous application program randomly and the other runs three application programs in series and an anomalous application program very rarely. Application programs on both experiments are implemented on a single board computer. The experimental results demonstrate that the proposed method successfully detects anomalous behaviors by extracting application-specific power behaviors, while the existing approaches cannot.

  • A Stopping Criterion for Symbol Flipping Decoding of Non-Binary LDPC Codes

    Zhanzhan ZHAO  Xiaopeng JIAO  Jianjun MU  Qingqing LI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/05/10
      Vol:
    E104-A No:11
      Page(s):
    1644-1648

    A properly designed stopping criterion for iterative decoding algorithms can save a number of iterations and lead to a considerable reduction of system latency. The symbol flipping decoding algorithms based on prediction (SFDP) have been proposed recently for efficient decoding of non-binary low-density parity-check (LDPC) codes. To detect the decoding frames with slow convergence or even non-convergence, we track the number of oscillations on the value of objective function during the iterations. Based on this tracking number, we design a simple stopping criterion for the SFDP algorithms. Simulation results show that the proposed stopping criterion can significantly reduce the number of iterations at low signal-to-noise ratio regions with slight error performance degradation.

  • A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Quasi-Cyclic Codes via Polynomial Matrices Open Access

    Hajime MATSUI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/05/21
      Vol:
    E104-A No:11
      Page(s):
    1649-1653

    A construction method of self-orthogonal and self-dual quasi-cyclic codes is shown which relies on factorization of modulus polynomials for cyclicity in this study. The smaller-size generator polynomial matrices are used instead of the generator matrices as linear codes. An algorithm based on Chinese remainder theorem finds the generator polynomial matrix on the original modulus from the ones constructed on each factor. This method enables us to efficiently construct and search these codes when factoring modulus polynomials into reciprocal polynomials.

  • Adaptive Normal State-Space Notch Digital Filters: Algorithm and Frequency-Estimation Bias Analysis

    Yoichi HINAMOTO  Shotaro NISHIMURA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1585-1592

    This paper investigates an adaptive notch digital filter that employs normal state-space realization of a single-frequency second-order IIR notch digital filter. An adaptive algorithm is developed to minimize the mean-squared output error of the filter iteratively. This algorithm is based on a simplified form of the gradient-decent method. Stability and frequency estimation bias are analyzed for the adaptive iterative algorithm. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the proposed adaptive notch digital filter and the frequency-estimation bias analyzed for the adaptive iterative algorithm.

  • Deadlock-Free Symbolic Smith Controllers Based on Prediction for Nondeterministic Systems Open Access

    Masashi MIZOGUCHI  Toshimitsu USHIO  

     
    PAPER-Systems and Control

      Pubricized:
    2021/05/14
      Vol:
    E104-A No:11
      Page(s):
    1593-1602

    The Smith method has been used to control physical plants with dead time components, where plant states after the dead time is elapsed are predicted and a control input is determined based on the predicted states. We extend the method to the symbolic control and design a symbolic Smith controller to deal with a nondeterministic embedded system. Due to the nondeterministic transitions, the proposed controller computes all reachable plant states after the dead time is elapsed and determines a control input that is suitable for all of them in terms of a given control specification. The essence of the Smith method is that the effects of the dead time are suppressed by the prediction, however, which is not always guaranteed for nondeterministic systems because there may exist no control input that is suitable for all predicted states. Thus, in this paper, we discuss the existence of a deadlock-free symbolic Smith controller. If it exists, it is guaranteed that the effects of the dead time can be suppressed and that the controller can always issue the control input for any reachable state of the plant. If it does not exist, it is proved that the deviation from the control specification is essentially inevitable.

  • Practical Integral Distinguishers on SNOW 3G and KCipher-2

    Jin HOKI  Kosei SAKAMOTO  Kazuhiko MINEMATSU  Takanori ISOBE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1603-1611

    In this paper, we explore the security against integral attacks on well-known stream ciphers SNOW 3G and KCipher-2. SNOW 3G is the core of the 3GPP confidentiality and integrity algorithms UEA2 and UIA2, and KCipher-2 is a standard algorithm of ISO/IEC 18033-4 and CRYPTREC. Specifically, we investigate the propagation of the division property inside SNOW 3G and KCipher-2 by the Mixed-Integer Linear Programming to efficiently find an integral distinguisher. As a result, we present a 7-round integral distinguisher with 23 chosen IVs for KCipher-2. As far as we know, this is the first attack on a reduced variant of KCipher-2 by the third party. In addition, we present a 13-round integral distinguisher with 27 chosen IVs for SNOW 3G, whose time/data complexity is half of the previous best attack by Biryukov et al.

  • Metric-Combining Multiuser Detection Using Replica Cancellation with RTS and Enhanced CTS for High-Reliable and Low-Latency Wireless Communications

    Hideya SO  Kazuhiko FUKAWA  Hayato SOYA  Yuyuan CHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/06/01
      Vol:
    E104-B No:11
      Page(s):
    1441-1453

    In unlicensed spectrum, wireless communications employing carrier sense multiple access with collision avoidance (CSMA/CA) suffer from longer transmission delay time as the number of user terminals (UTs) increases, because packet collisions are more likely to occur. To cope with this problem, this paper proposes a new multiuser detection (MUD) scheme that uses both request-to-send (RTS) and enhanced clear-to-send (eCTS) for high-reliable and low-latency wireless communications. As in conventional MUD scheme, the metric-combining MUD (MC-MUD) calculates log likelihood functions called metrics and accumulates the metrics for the maximum likelihood detection (MLD). To avoid increasing the number of states for MLD, MC-MUD forces the relevant UTs to retransmit their packets until all the collided packets are correctly detected, which requires a kind of central control and reduces the system throughput. To overcome these drawbacks, the proposed scheme, which is referred to as cancelling MC-MUD (CMC-MUD), deletes replicas of some of the collided packets from the received signals, once the packets are correctly detected during the retransmission. This cancellation enables new UTs to transmit their packets and then performs MLD without increasing the number of states, which improves the system throughput without increasing the complexity. In addition, the proposed scheme adopts RTS and eCTS. One UT that suffers from packet collision transmits RTS before the retransmission. Then, the corresponding access point (AP) transmits eCTS including addresses of the other UTs, which have experienced the same packet collision. To reproduce the same packet collision, these other UTs transmit their packets once they receive the eCTS. Computer simulations under one AP conditions evaluate an average carrier-to-interference ratio (CIR) range in which the proposed scheme is effective, and clarify that the transmission delay time of the proposed scheme is shorter than that of the conventional schemes. In two APs environments that can cause the hidden terminal problem, it is demonstrated that the proposed scheme achieves shorter transmission delay times than the conventional scheme with RTS and conventional CTS.

1061-1080hit(21534hit)