The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

921-940hit(30728hit)

  • Verikube: Automatic and Efficient Verification for Container Network Policies

    Haney KANG  Seungwon SHIN  

     
    LETTER-Information Network

      Pubricized:
    2022/08/26
      Vol:
    E105-D No:12
      Page(s):
    2131-2134

    Recently, Linux Container has been the de-facto standard for a cloud system, enabling cloud providers to create a virtual environment in a much more scaled manner. However, configuring container networks remains immature and requires automatic verification for efficient cloud management. We propose Verikube, which utilizes a novel graph structure representing policies to reduce memory consumption and accelerate verification. Moreover, unlike existing works, Verikube is compatible with the complex semantics of Cilium Policy which a cloud adopts from its advantage of performance. Our evaluation results show that Verikube performs at least seven times better for memory efficiency, at least 1.5 times faster for data structure management, and 20K times better for verification.

  • A Novel Hierarchical V2V Routing Algorithm Based on Bus in Urban VANETs

    Xiang BI  Shengzhen YANG  Benhong ZHANG  Xing WEI  

     
    PAPER-Network

      Pubricized:
    2022/05/19
      Vol:
    E105-B No:12
      Page(s):
    1487-1497

    Multi-hop V2V communication is a fundamental way to realize data transmission in Vehicular Ad-hoc Networks (VANET). It has excellent potential in intelligent transportation systems and automatic vehicle driving, and positively affects the safety, reliability, and comfort of vehicles. With advantages in speed and trajectory, distribution along the route, size, etc., the urban buses have become prospective relay nodes for urban VANETs. However, it is a considerable challenge to construct stable and reliable (meeting the requirements of bandwidth, delay, and bit error rate) multi-hop routing because of the complexity of the urban road and bus line network in the communication area, as well as many unevenly distributed buses on the road, etc. Given this above, this paper proposes a new hierarchical routing algorithm based on V2V geographic topology segmentation. Urban hierarchical routing is divided into two layers. The first layer of routing is called coarse routing, which is composed of areas; the second layer of routing is called internal routing (bus routing within the area). Q-learning is used to formulate the sequence of buses that transmit information within each area. Details are as follows: Firstly, based on a city map containing road network information, the entire city is divided into small grids by physical streets. Secondly, based on an analysis of the characteristics of the adjacent grid bus lines, the grids with the same routing attributes are integrated into the same area, reducing the algorithm's computational complexity during route discovery. Then, for the calculated area set, a coarse route composed of the selected area is established by filtering out a group of areas satisfying from the source node to the destination node. Finally, the bus sequence between anchor intersections is selected within the chosen area, and a complete multi-hop route from the source node to the destination node is finally constructed. Sufficient simulations show that the proposed routing algorithm has more stable performance in terms of packet transmission rate, average end-to-end delay, routing duration, and other indicators than similar algorithms.

  • A Novel e-Cash Payment System with Divisibility Based on Proxy Blind Signature in Web of Things

    Iuon-Chang LIN  Chin-Chen CHANG  Hsiao-Chi CHIANG  

     
    PAPER-Information Network

      Pubricized:
    2022/09/02
      Vol:
    E105-D No:12
      Page(s):
    2092-2103

    The prosperous Internet communication technologies have led to e-commerce in mobile computing and made Web of Things become popular. Electronic payment is the most important part of e-commerce, so many electronic payment schemes have been proposed. However, most of proposed schemes cannot give change. Based on proxy blind signatures, an e-cash payment system is proposed in this paper to solve this problem. This system can not only provide change divisibility through Web of Things, but also provide anonymity, verifiability, unforgeability and double-spending owner track.

  • Comparison of Value- and Reference-Based Memory Page Compaction in Virtualized Systems

    Naoki AOYAMA  Hiroshi YAMADA  

     
    PAPER-Software System

      Pubricized:
    2022/08/31
      Vol:
    E105-D No:12
      Page(s):
    2075-2084

    The issue of copying values or references has historically been studied for managing memory objects, especially in distributed systems. In this paper, we explore a new topic on copying values v.s. references, for memory page compaction on virtualized systems. Memory page compaction moves target physical pages to a contiguous memory region at the operating system kernel level to create huge pages. Memory virtualization provides an opportunity to perform memory page compaction by copying the references of the physical pages. That is, instead of copying pages' values, we can move guest physical pages by changing the mappings of guest-physical to machine-physical pages. The goal of this paper is a quantitative comparison between value- and reference-based memory page compaction. To do so, we developed a software mechanism that achieves memory page compaction by appropriately updating the references of guest-physical pages. We prototyped the mechanism on Linux 4.19.29 and the experimental results show that the prototype's page compaction is up to 78% faster and achieves up to 17% higher performance on the memory-intensive real-world applications as compared to the default value-copy compaction scheme.

  • A Direct Construction of Binary Even-Length Z-Complementary Pairs with Zero Correlation Zone Ratio of 6/7

    Xiuping PENG  Mingshuo SHEN  Hongbin LIN  Shide WANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/05/26
      Vol:
    E105-A No:12
      Page(s):
    1612-1615

    This letter provides a direct construction of binary even-length Z-complementary pairs. To date, the maximum zero correlation zone ratio of Type-I Z-complementary pairs has reached 6/7, but no direct construction of Z-complementary pairs can achieve the zero correlation zone ratio of 6/7. In this letter, based on Boolean function, we give a direct construction of binary even-length Z-complementary pairs with zero correlation zone ratio 6/7. The length of constructed Z-complementary pairs is 2m+3 + 2m + 2+2m+1 and the width of zero correlation zone is 2m+3 + 2m+2.

  • Ground Test of Radio Frequency Compatibility for Cn-Band Satellite Navigation and Microwave Landing System Open Access

    Ruihua LIU  Yin LI  Ling ZOU  Yude NI  

     
    PAPER-Satellite Communications

      Pubricized:
    2022/05/19
      Vol:
    E105-B No:12
      Page(s):
    1580-1588

    Testing the radio frequency compatibility between Cn-band Satellite Navigation and Microwave Landing System (MLS) has included establishing a specific interference model and reporting the effect of such interference. This paper considers two interference scenarios according to the interfered system. By calculating the Power Flux Density (PFD) values, the interference for Cn-band satellite navigation downlink signal from several visible space stations on MLS service is evaluated. Simulation analysis of the interference for MLS DPSK-data word signal and scanning signal on Cn-band satellite navigation signal is based on the Spectral Separation Coefficient (SSC) and equivalent Carrier-to-Noise Ratio methodologies. Ground tests at a particular military airfield equipped with MLS ground stations were successfully carried out, and some measured data verified the theoretical and numerical results. This study will certainly benefit the design of Cn-band satellite navigation signals and guide the interoperability and compatibility research of Cn-band satellite navigation and MLS.

  • Accurate Parallel Flow Monitoring for Loss Measurements

    Kohei WATABE  Norinosuke MURAI  Shintaro HIRAKAWA  Kenji NAKAGAWA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2022/06/29
      Vol:
    E105-B No:12
      Page(s):
    1530-1539

    End-to-end loss and delay are both fundamental metrics in network performance evaluation, and accurate measurements for these end-to-end metrics are one of the keys to keeping delay/loss-sensitive applications (e.g., audio/video conferencing, IP telephony, or telesurgery) comfortable on networks. In our previous work [1], we proposed a parallel flow monitoring method that can provide accurate active measurements of end-to-end delay. In this method, delay samples of a target flow increase by utilizing the observation results of other flows sharing the source/destination with the target flow. In this paper, to improve accuracy of loss measurements, we propose a loss measurement method by extending our delay measurement method. Additionally, we improve the loss measurement method so that it enables to fully utilize information of all flows including flows with different source and destination. We evaluate the proposed method through theoretical and simulation analyses. The evaluations show that the accuracy of the proposed method is bounded by theoretical upper/lower bounds, and it is confirmed that it reduces the error of loss rate estimations by 57.5% on average.

  • The Implementation of a Hybrid Router and Dynamic Switching Algorithm on a Multi-FPGA System

    Tomoki SHIMIZU  Kohei ITO  Kensuke IIZUKA  Kazuei HIRONAKA  Hideharu AMANO  

     
    PAPER

      Pubricized:
    2022/06/30
      Vol:
    E105-D No:12
      Page(s):
    2008-2018

    The multi-FPGA system known as, the Flow-in-Cloud (FiC) system, is composed of mid-range FPGAs that are directly interconnected by high-speed serial links. FiC is currently being developed as a server for multi-access edge computing (MEC), which is one of the core technologies of 5G. Because the applications of MEC are sometimes timing-critical, a static time division multiplexing (STDM) network has been used on FiC. However, the STDM network exhibits the disadvantage of decreasing link utilization, especially under light traffic. To solve this problem, we propose a hybrid router that combines packet switching for low-priority communication and STDM for high-priority communication. In our hybrid network, the packet switching uses slots that are unused by the STDM; therefore, best-effort communication by packet switching and QoS guarantee communication by the STDM can be used simultaneously. Furthermore, to improve each link utilization under a low network traffic load, we propose a dynamic communication switching algorithm. In our algorithm, each router monitors the network load metrics, and according to the metrics, timing-critical tasks select the STDM according to the metrics only when congestion occurs. This can achieve both QoS guarantee and efficient utilization of each link with a small resource overhead. In our evaluation, the dynamic algorithm was up to 24.6% faster on the execution time with a high network load compared to the packet switching on a real multi-FPGA system with 24 boards.

  • New Restricted Isometry Condition Using Null Space Constant for Compressed Sensing

    Haiyang ZOU  Wengang ZHAO  

     
    PAPER-Information Theory

      Pubricized:
    2022/06/20
      Vol:
    E105-A No:12
      Page(s):
    1591-1603

    It has been widely recognized that in compressed sensing, many restricted isometry property (RIP) conditions can be easily obtained by using the null space property (NSP) with its null space constant (NSC) 0<θ≤1 to construct a contradicted method for sparse signal recovery. However, the traditional NSP with θ=1 will lead to conservative RIP conditions. In this paper, we extend the NSP with 0<θ<1 to a scale NSP, which uses a factor τ to scale down all vectors belonged to the Null space of a sensing matrix. Following the popular proof procedure and using the scale NSP, we establish more relaxed RIP conditions with the scale factor τ, which guarantee the bounded approximation recovery of all sparse signals in the bounded noisy through the constrained l1 minimization. An application verifies the advantages of the scale factor in the number of measurements.

  • Emitter Tracking via Direct Target Motion Analysis

    Yiqi CHEN  Ping WEI  Gaiyou LI  Huaguo ZHANG  Hongshu LIAO  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/06/08
      Vol:
    E105-A No:12
      Page(s):
    1522-1536

    This paper considers tracking of a non-cooperative emitter based on a single sensor. To this end, the direct target motion analysis (DTMA) approach, where the target state is straightforwardly achieved from the received signal, is exploited. In order to achieve observability, the sensor has to perform a maneuver relative to the emitter. By suitably building an approximated likelihood function, the unscented Kalman filter (UKF), which is able to work under high nonlinearity of the measurement model, is adopted to recursively estimate the target state. Besides, the posterior Cramér-Rao bound (PCRB) of DTMA, which can be used as performance benchmark, is also achieved. The effectiveness of proposed method is verified via simulation experiments.

  • Substring Searchable Symmetric Encryption Based on an Improved DAWG

    Hiroaki YAMAMOTO  Ryosuke ODA  Yoshihiro WACHI  Hiroshi FUJIWARA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/06/08
      Vol:
    E105-A No:12
      Page(s):
    1578-1590

    A searchable symmetric encryption (SSE) scheme is a method that searches encrypted data without decrypting it. In this paper, we address the substring search problem such that for a set D of documents and a pattern p, we find all occurrences of p in D. Here, a document and a pattern are defined as a string. A directed acyclic word graph (DAWG), which is a deterministic finite automaton, is known for solving a substring search problem on a plaintext. We improve a DAWG so that all transitions of a DAWG have distinct symbols. Besides, we present a space-efficient and secure substring SSE scheme using an improved DAWG. The proposed substring SSE scheme consists of an index with a simple structure, and the size is O(n) for the total size n of documents.

  • Random Access Identifier-Linked Receiver Beamforming with Transmitter Filtering in TDD-Based Random Access Open Access

    Yuto MUROKI  Yotaro MURAKAMI  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/05/25
      Vol:
    E105-B No:12
      Page(s):
    1548-1558

    This paper proposes a novel random access identifier (RAID)-linked receiver beamforming method for time division duplex (TDD)-based random access. When the number of receiver antennas at the base station is large in a massive multiple-input multiple-output (MIMO) scenario, the channel estimation accuracy per receiver antenna at the base station receiver is degraded due to the limited received signal power per antenna from the user terminal. This results in degradation in the receiver beamforming (BF) or antenna diversity combining and active RAID detection. The purpose of the proposed method is to achieve accurate active RAID detection and channel estimation with a reasonable level of computational complexity at the base station receiver. In the proposed method, a unique receiver BF vector applied at the base station is linked to each of the M RAIDs prepared by the system. The user terminal selects an appropriate pair comprising a receiver BF vector and a RAID in advance based on the channel estimation results in the downlink assuming channel reciprocity in a TDD system. Therefore, per-receiver antenna channel estimation for receiver BF is not necessary in the proposed method. Furthermore, in order to utilize fully the knowledge of the channel at the user transmitter, we propose applying transmitter filtering (TF) to the proposed method for effective channel shortening in order to increase the orthogonal preambles for active RAID detection and channel estimation prepared for each RAID. Computer simulation results show that the proposed method greatly improves the accuracy of active RAID detection and channel estimation. This results in lower error rates than that for the conventional method performing channel estimation at each antenna in a massive MIMO environment.

  • How to Make a Secure Index for Searchable Symmetric Encryption, Revisited

    Yohei WATANABE  Takeshi NAKAI  Kazuma OHARA  Takuya NOJIMA  Yexuan LIU  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/05/25
      Vol:
    E105-A No:12
      Page(s):
    1559-1577

    Searchable symmetric encryption (SSE) enables clients to search encrypted data. Curtmola et al. (ACM CCS 2006) formalized a model and security notions of SSE and proposed two concrete constructions called SSE-1 and SSE-2. After the seminal work by Curtmola et al., SSE becomes an active area of encrypted search. In this paper, we focus on two unnoticed problems in the seminal paper by Curtmola et al. First, we show that SSE-2 does not appropriately implement Curtmola et al.'s construction idea for dummy addition. We refine SSE-2's (and its variants') dummy-adding procedure to keep the number of dummies sufficiently many but as small as possible. We then show how to extend it to the dynamic setting while keeping the dummy-adding procedure work well and implement our scheme to show its practical efficiency. Second, we point out that the SSE-1 can cause a search error when a searched keyword is not contained in any document file stored at a server and show how to fix it.

  • MemFRCN: Few Shot Object Detection with Memorable Faster-RCNN

    TongWei LU  ShiHai JIA  Hao ZHANG  

     
    LETTER-Vision

      Pubricized:
    2022/05/24
      Vol:
    E105-A No:12
      Page(s):
    1626-1630

    At this stage, research in the field of Few-shot image classification (FSC) has made good progress, but there are still many difficulties in the field of Few-shot object detection (FSOD). Almost all of the current FSOD methods face catastrophic forgetting problems, which are manifested in that the accuracy of base class recognition will drop seriously when acquiring the ability to recognize Novel classes. And for many methods, the accuracy of the model will fall back as the class increases. To address this problem we propose a new memory-based method called Memorable Faster R-CNN (MemFRCN), which makes the model remember the categories it has already seen. Specifically, we propose a new tow-stage object detector consisting of a memory-based classifier (MemCla), a fully connected neural network classifier (FCC) and an adaptive fusion block (AdFus). The former stores the embedding vector of each category as memory, which enables the model to have memory capabilities to avoid catastrophic forgetting events. The final part fuses the outputs of FCC and MemCla, which can automatically adjust the fusion method of the model when the number of samples increases so that the model can achieve better performance under various conditions. Our method can perform well on unseen classes while maintaining the detection accuracy of seen classes. Experimental results demonstrate that our method outperforms other current methods on multiple benchmarks.

  • A Novel Fixed-Point Conversion Methodology For Digital Signal Processing Systems

    Phuong T.K. DINH  Linh T.T. DINH  Tung T. TRAN  Lam S. PHAM  Han Le DUC  Chi P. HOANG  Minh D. NGUYEN  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/06/17
      Vol:
    E105-A No:12
      Page(s):
    1537-1550

    Recently, most signal processing algorithms have been developed with floating-point arithmetic, while the fixed-point arithmetic is more popular with most commercial devices and low-power real-time applications which are implemented on embedded/ASIC/FPGA systems. Therefore, the optimal Floating-point to Fixed-point Conversion (FFC) methodology is a promising solution. In this paper, we propose the FFC consisting of signal grouping technique and simulation-based word length optimization. In order to evaluate the performance of the proposed technique, simulations are carried out and hardware co-simulation on Field Programmable Gate Arrays (FPGAs) platform have been applied to complex Digital Signal Processing (DSP) algorithms: Linear Time Invariant (LTI) systems, multi-mode Fast Fourier Transform (FFT) circuit for IEEE 802.11 ax WLAN Devices and the calibration algorithm of gain and clock skew in Time-Interleaved ADC (TI-ADC) using Adaptive Noise Canceller (ANC). The results show that the proposed technique can reduce the hardware cost about 30% while being able to maintain its speed and reliability.

  • Functional Connectivity Estimation by Phase Synchronization and Information Flow Approaches in Coupled Chaotic Dynamical Systems

    Mayuna TOBE  Sou NOBUKAWA  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2022/06/03
      Vol:
    E105-A No:12
      Page(s):
    1604-1611

    Various types of indices for estimating functional connectivity have been developed over the years that have introduced effective approaches to discovering complex neural networks in the brain. Two significant examples are the phase lag index (PLI) and transfer entropy (TE). Both indices have specific benefits; PLI, defined using instantaneous phase dynamics, achieves high spatiotemporal resolution, whereas transfer entropy (TE), defined using information flow, reveals directed network characteristics. However, the relationship between these indices remains unclear. In this study, we hypothesize that there exists a complementary relationship between PLI and TE to discover new aspects of functional connectivity that cannot be detected using either PLI or TE. To validate this hypothesis, we evaluated the synchronization in a coupled Rössler model using PLI and TE. Consequently, we proved the existence of non-linear relationships between PLI and TE. Both indexes exhibit a specific trend that demonstrates a linear relationship in the region of small TE values. However, above a specific TE value, PLI converges to a constant irrespective of the TE value. In addition to this relational difference in synchronization, there is another characteristic difference between these indices. Moreover, by virtue of its finer temporal resolution, PLI can capture the temporal variability of the degree of synchronization, which is called dynamical functional connectivity. TE lacks this temporal characteristic because it requires a longer evaluation period in this estimation process. Therefore, combining the advantages of both indices might contribute to revealing complex spatiotemporal functional connectivity in brain activity.

  • Vehicle Re-Identification Based on Quadratic Split Architecture and Auxiliary Information Embedding

    Tongwei LU  Hao ZHANG  Feng MIN  Shihai JIA  

     
    LETTER-Image

      Pubricized:
    2022/05/24
      Vol:
    E105-A No:12
      Page(s):
    1621-1625

    Convolutional neural network (CNN) based vehicle re-identificatioin (ReID) inevitably has many disadvantages, such as information loss caused by downsampling operation. Therefore we propose a vision transformer (Vit) based vehicle ReID method to solve this problem. To improve the feature representation of vision transformer and make full use of additional vehicle information, the following methods are presented. (I) We propose a Quadratic Split Architecture (QSA) to learn both global and local features. More precisely, we split an image into many patches as “global part” and further split them into smaller sub-patches as “local part”. Features of both global and local part will be aggregated to enhance the representation ability. (II) The Auxiliary Information Embedding (AIE) is proposed to improve the robustness of the model by plugging a learnable camera/viewpoint embedding into Vit. Experimental results on several benchmarks indicate that our method is superior to many advanced vehicle ReID methods.

  • A Rate-Based Congestion Control Method for NDN Using Sparse Explicit Rate Notification and AIMD-Based Rate Adjustment

    Takahiko KATO  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2022/06/09
      Vol:
    E105-B No:12
      Page(s):
    1519-1529

    In this paper, we propose a new rate-based congestion control method for Named Data Networking (NDN) using additive increase multiplicative decrease (AIMD) and explicit rate notification. In the proposed method, routers notify a corresponding consumer of bottleneck bandwidth by use of Data packets, in a relatively long interval. In addition, routers monitor outgoing faces using the leaky bucket mechanism. When congestion is detected, the routers report this to corresponding consumers using negative-acknowledgment (NACK) packets. A consumer sets its Interest sending rate to the reported rate when a new value is reported. In addition, the consumer adjusts the sending rate to be around the reported rate based on the AIMD mechanism at Data/NACK packet reception. Computer simulations show that the proposed method achieves a high throughput performance and max-min fairness thanks to the effective congestion avoidance.

  • 920MHz Path Loss Prediction Formula Based on FDTD Method for IoT Wireless System close to Ceiling with Concrete Beam

    Naotake YAMAMOTO  Taichi SASAKI  Atsushi YAMAMOTO  Tetsuya HISHIKAWA  Kentaro SAITO  Jun-ichi TAKADA  Toshiyuki MAEYAMA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/06/22
      Vol:
    E105-B No:12
      Page(s):
    1540-1547

    A path loss prediction formula for IoT (Internet of Things) wireless communication close to ceiling beams in the 920MHz band is presented. In first step of our investigation, we conduct simulations using the FDTD (Finite Difference Time Domain) method and propagation tests close to a beam on the ceiling of a concrete building. In the second step, we derive a path loss prediction formula from the simulation results by using the FDTD method, by dividing into three regions of LoS (line-of-sight) situation, situation in the vicinity of the beam, and NLoS (non-line-of-sight) situation, depending on the positional relationship between the beam and transmitter (Tx) and receiver (Rx) antennas. For each condition, the prediction formula is expressed by a relatively simple form as a function of height of the antennas with respect to the beam bottom. Thus, the prediction formula is very useful for the wireless site planning for the IoT wireless devices set close to concrete beam ceiling.

  • Sigma-Delta Beamformer DOA Estimation for Distributed Array Radar Open Access

    Toshihiro ITO  Shoji MATSUDA  Yoshiya KASAHARA  

     
    PAPER-Sensing

      Pubricized:
    2022/06/09
      Vol:
    E105-B No:12
      Page(s):
    1589-1599

    Distributed array radars consist of multiple sub-arrays separated by tens to hundreds of wavelengths and can match narrow beamwidths with large-aperture, high-gain antennas. The physical independence of the sub-arrays contributes to significant structure flexibility and is one of the advantages of such radars. However, a typical problem is the grating lobes in the digital beam forming (DBF) beam pattern. Unfortunately, the need to suppress the generation of grating lobes makes the design of acceptable sub-array arrangements very difficult. A sigma-delta beam former direction of arrival (DOA) estimation method is proposed in this study to solve this problem. The proposed method performs DOA estimation by acquiring the difference signals in addition to the sum signals of all sub-arrays. The difference signal is typically used for monopulse DOA estimation in the phased array radar. The sigma-delta beamformer simultaneously has both advantages of DOA estimations using a distributed array with a large aperture length and using a sub-array that is not affected by the grating lobe. The proposed method can improve the DOA estimation accuracy over the conventional method under grating lobe situations and help the distributed array radar achieve flexibility in the sub-array arrangement. Numerical simulations are presented to verify the effectiveness of the proposed DOA estimation method.

921-940hit(30728hit)