The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

22041-22060hit(22683hit)

  • Design of Josephson Ternary Delta-Gate (δ-Gate)

    Ali Massoud HAIDAR  Fu-Qiang LI  Mititada MORISUE  

     
    PAPER-Computer Hardware and Design

      Vol:
    E76-D No:8
      Page(s):
    853-862

    A new circuit design of Josephson ternary δ-gate composed of Josephson junction devices is presented. Mathematical theory for synthesizing, analyzing, and realizing any given function in ternary system using Josephson ternary δ-gate is introduced. The Josephson ternary δ-gate is realized using SQUID technique. Circuit simulation results using J-SPICE demonstrated the feasibility and the reliability operations of Josephson ternary δ-gate with very high performances for both speed and power consumption (max. propagation delay time44 ps and max. power consumption2.6µW). The Josephson ternary δ-gate forms a complete set (completeness) with the ternary constants (1, 0, 1). The number of SQUIDs that are needed to perform the operation of δ-gate is 6. Different design with less than 6 SQUIDs is not possible because it can not perform the operation of δ-gate. The advantages of Josephson ternary δ-gate compared with different Josephson logic circuits are as follows: The δ-gate has the property that a simple realization to any given ternary logic function as the building blocks can be achieved. The δ-gate has simple construction with small number of SQUIDs. The δ-gate can realize a large number of ternary functions with small number of input/output pins. The performances of δ-gate is very high, very low power consumption and ultra high speed switching operation.

  • A Signal Processing Method of Nonstationary Stochastic Response on a Power Scale for the Actual Sound Insulation Systems

    Mitsuo OHTA  Kiminobu NISHIMURA  

     
    PAPER-Speech and Acoustic Signal Processing

      Vol:
    E76-A No:8
      Page(s):
    1293-1299

    A new trial of statistical evaluation for an output response of power linear type acoustic systems with nonstationary random input is proposed. The purpose of this study is to predict the output probability distribution function on the basis of a standard type pre-experiment in a laboratoty. The statistical properties like nonstationarity, non-Gamma distribution property and various type linear and non-linear correlations of input signal are reflected in the form of differential operation with respect to distribution parameters. More concretely, the pre-experiment is carried out for a power linear acoustic system excited only by the Gamma distribution type sandard random input. Considering the non-negative random property for the output response of a power linear system, the well-known statistical Laguerre expansion series type probability expression is first employed as the framework of basic probability distribution expression on the output power fluctuation. Then, the objective output probability distribution for a non-stationary case can be easily derived only by successively employing newly introduced differential operators to this basic probability distribution of statistical Laguerre expansion series type. As an application to the actual noise environment, the proposed method is employed for an evaluation problem on the stochastic response probability distribution for an acoustic sound insulation system excited by a nonstationary input noise.

  • Fabrication and Characterization of Bi-epitaxial Grain Boundary Junctions in YBa2Cu3O7δ

    Kazuya KINOSHITA  Syuuji ARISAKA  Takeshi KOBAYASHI  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1265-1270

    We have fabricated bi-epitaxial grain boundary junctions in YBa2Cu3O7δ (YBCO) thin films by using SrTiO3 (STO) seed layers on MgO(100) substrate. YBCO film growing over the STO seed layer has a different in-plane orientation from YBCO film without the seed layer, so artificial grain boundaries were created at the edge of the seed layer. The fabricated junctions have high Tc (up to 80 K), and constant-voltage current steps are observed in response to 12.1 GHz microwave radiation. Moreover, some of the junctions show characteristic current-voltage curves comprising not only an usual Josephson-like characteristic but also a low critical current due to the flux creep. This suggests that the two characteristic parts are likely to be connected in series at the junction region.

  • Hybrid Neural Networks as a Tool for the Compressor Diagnosis

    Manabu KOTANI  Haruya MATSUMOTO  Toshihide KANAGAWA  

     
    PAPER-Speech Processing

      Vol:
    E76-D No:8
      Page(s):
    882-889

    An attempt to apply neural networks to the acoustic diagnosis for the reciprocating compressor is described. The proposed neural network, Hybrid Neural Network (HNN), is composed of two multi-layered neural networks, an Acoustic Feature Extraction Network (AFEN) and a Fault Discrimination Network (FDN). The AFEN has multi-layers and the number of units in the middle hidden layer is smaller than the others. The input patterns of the AFEN are the logarithmic power spectra. In the AFEN, the error back propagation method is applied as the learning algorithm and the target patterns for the output layer are the same as the input patterns. After the learning, the hidden layer acquires the compressed input information. The architecture of the AFEN appropriate for the acoustic diagnosis is examined. This includes the determination of the form of the activation function in the output layer, the number of hidden layers and the numbers of units in the hidden layers. The FDN is composed of three layers and the learning algorithm is the same as the AFEN. The appropriate number of units in the hidden layer of the FDN is examined. The input patterns of the FDN are fed from the output of the hidden layer in the learned AFEN. The task of the HNN is to discriminate the types of faults in the compressor's two elements, the valve plate and the valve spring. The performance of the FDN are compared between the different inputs; the output of the hidden layer in the AFEN, the conventional cepstral coefficients and the filterbank's outputs. Furthermore, the FDN itself is compared to the conventional pattern recognition technique based on the feature vector distance, the Euclid distance measure, where the input is taken from the AFEN. The obtained results show that the discrimination accuracy with the HNN is better than that with the other combination of the discrimination method and its input. The output criteria of network for practical use is also discussed. The discrimination accuracy with this criteria is 85.4% and there is no case which mistakes the fault condition for the normal condition. These results suggest that the proposed decision network is effective for the acoustic diagnosis.

  • Implementation of an Industrial R/C System Using a Hybrid DS/FH Spread Spectrum Technique

    Atsushi HOSHIKUKI  Michio YAMAMOTO  Satoru ISHII  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    984-989

    Industrial radio control systems require a high degree of safety and reliability even in operating environments where harsh interference conditions exist. In order to implement Spread Spectrum (SS) modulation techniques in industrial radio control systems, a hybrid Direct Sequence/Frequency Hopping (DS/FH) system with high speed synchronization capability was designed, implemented and evaluated. In this system, a digital matched filter was utilized for despreading the DS signal. By manipulating the despread signal and sensing the correlation peak, the frequency hopping circuit can operate without a special synchronizing circuit. The focus of this report is on an engineering sample created for the 900MHz band available as an ISM band in the U.S. In this sample, error correction code was integrated with the hybrid DS/FH which gives the system excellent narrow-band interference rejection properties and Code Division Multiple Access (CDMA) capabilities.

  • Theoretical and Experimental Research of Nonlinear Physical Systems Use in the Base of Displacements Measurement

    Almantas MOZURAS  

     
    PAPER-Nonlinear Circuits and Systems

      Vol:
    E76-A No:8
      Page(s):
    1343-1349

    The physical system is considered more suitable for measurement purposes the greater is its linearity. However, in nature and engineering there are no purely linear physical transducing systems for convertion a primary onformation. The use of the linear features of the system in the measurement process finally causes the drawbacks: systematic error due to nonlinear distortions, low ratio informative signal/ noise, the necessity to evaluate a great number of the a priori parameters of the transducer in order to receive an absolute result, low thermostability because every a priori parameter itself has a temperature dependence. To exclude these drawbacks a method has been developed using nonlinear physical systems in the base of the displacements measurement. In this work is presented the realization of the method using electretic and electrostatic transducer as a converting physical system. A contactless transducer is placed parallelly to the surface of the object which displacements are measured. The transducer is driven to harmonic oscillations. Typical time intervals between even and odd extremums of the transducer output signal are measured. The object displacements are determined according to the changes of the typical time intervals. The method itself has no errors because approximations were not made while deriving the relations. The source of the errors is inaccurate registration of the start and the end of the typical time intervals. In the work are analysed the errors related to the concrete realization devices: analogue differentiator, peak detector and analog digital transducer. It is shown that the measurement is possible only if the physical system is nonlinear. The method is generalized to that case if the function of transformation of ths system has the form f(x) and monotonous character. The results of experimental investigations confirm the theoretical conclusions.

  • Analysis of Gaze Shift in Depth in Alzheimer's Disease Patients

    Kenya UOMORI  Shinji MURAKAMI  Mitsuho YAMADA  Mitsuru FUJII  Hiroshi YOSHIMATSU  Norihito NAKANO  Hitoshi HONGO  Jiro MIYAZAWA  Keiichi UENO  Ryo FUKATSU  Naohiko TAKAHATA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E76-D No:8
      Page(s):
    963-973

    To clarify the stereopsis disturbance in patients with Alzheimer's disease (AD), we analyzed binocular eye movement when subjects shifted their gaze between targets at different depths. Subjects are patients with Alzheimer's disease, Mluti-infarct dementia (MID), or Olivopontocerebellar atrophy (OPCA), and healthy controls. Targets are arranged in two ways: along the median plane and asymmetrically crossing the median plane, at distances from the eyes of 1000 mm and 300 mm. When the targets are switched at the onset of a beep, the subjects shifted their gaze to the lit target. The experiment is conducted in a dimly lit room whose structure is capable of providing good binocular cues for depth. In AD subjects, especially in the subjects whose symptoms are moderate (advanced stage), vergence is limited and the change in the convergence angle is small, unstable, and non-uniform. These results are different from those of other patients (MID) and OPCA) or healthy controls and suggest a disturbance of stereopsis in the parietal lobe where AD patients typically have dysfunctions.

  • A Modular Inversion Hardware Algorithm with a Redundant Binary Representation

    Naofumi TAKAGI  

     
    PAPER-Computer Hardware and Design

      Vol:
    E76-D No:8
      Page(s):
    863-869

    A hardware algorithm for modular inversion is proposed. It is based on the extended Euclidean algorithm. All intermediate results are represented in a redundant binary representation with a digit set {0, 1,1}. All addition/subtractions are performed without carry propagation. A modular inversion is carried out in O (n) clock cycles where n is the word length of the modulus. The length of each clock cycle is constant independent of n. A modular inverter based on the algorithm has a regular cellular array structure with a bit slice feature and is very suitable for VLSI implementation. Its amount of hardware is proportional to n.

  • Definition of Attributed Random Graph and Proposal of Its Applications

    Dong Su SEONG  Ho Sung KIM  Kyu Ho PARK  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:8
      Page(s):
    919-925

    In this paper, we define an attributed random graph, which can be considered as a generalization of conventional ones, to include multiple attributes as well as numeric attribute instead of a single nominal attribute in random vertices and edges. Then we derive the probability equations for an attributed graph to be an outcome graph of the attributed random graph, and the equations for the entropy calculation of the attributed random graph. Finally, we propose the application areas to computer vision and machine learning using these concepts.

  • A Network-Topology-Independent Static Task Allocation Strategy for Massively Parallel Computers

    Takanobu BABA  Akehito GUNJI  Yoshifumi IWAMOTO  

     
    PAPER-Computer Networks

      Vol:
    E76-D No:8
      Page(s):
    870-881

    A network-topology-independent static task allocation strategy has been designed and implemented for massively parallel computers. For mapping a task graph to a processor graph, this strategy evaluates several functions that represent some intuitively feasible properties or the graphs. They include the connectivity with the allocated nodes, distance from the median of a graph, connectivity with candidate nodes, and the number of candidate nodes within a distance. Several greedy strategies are defined to guide the mapping process, utilizing the indicated function values. An allocation system has been designed and implemented based on the allocation strategy. In experiments we have defined about 1000 nodes in task graphs with regular and irregular topologies, and the same order of processors with mesh, tree, and hypercube topologies. The results are summarized as follows. 1) The system can yield 4.0 times better total communication costs than an arbitrary allocation. 2) It is difficult to select a single strategy capable of providing the best solutions for a wide range of task-processor combinations. 3) Comparison with hypercube-topology-dependent research indicates that our topology-independent allocator produces better results than the dependent ones. 4) The order of computaion time of the allocator is experimentally proved to be O (n2) where n represents the number of tasks.

  • Linearization Analysis of Threshold Characteristics for Some Applications of Mutually Coupled SQUIDs

    Yoshinao MIZUGAKI  Koji NAKAJIMA  Tsutomu YAMASHITA  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1291-1297

    The threshold characteristics of mutually coupled SQUIDs (Superconducting Quantum Interference Devices) have been analytically and numerically investigated. The mutually coupled SQUIDs investigated is composed of an rf-SQUID and a dc-SQUID. Here, the rf-SQUID is a flux quantum generator and the dc-SQUID is a flux detector. The linearization method substituting sin-1x by (π/2)x (1x1) is found valid when it is applied to the mutually coupled SQUIDs, because it is possible to obtain the superconducting regions analytically. By computer implementation of linearization method, we found this method is very effective and very quick compared to the ordinary methods. We report the internal flux on an rf-SQUID, the threshold of a dc-SQUID, and that of mutually coupled SQUIDs obtained by Lagrange multiplier formulation and linearization. The features of the threshold characteristics of the mutually coupled SQUIDs with various parameters are also reported. The discontinuous behavior of threshold of the mutually coupled SQUIDs are attractive for digital applications. We suggest three applications of the mutually coupled SQUIDs, that is, a logic gate for high-Tc superconductors (HTSs), a neuron device, and an A/D converter.

  • Magnetic Shields for HTc SQUIDs

    Kumiko IMAI  Hironori MATSUBA  Peter SPEAR  Alistair FIFE  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1280-1286

    Bi2Sr2Ca1Cu2Ox thick film superconducting shields have been fabricated for use with HTc SQUIDs. Shielding factors and internal noise levels of the shields were measured using a DC SQUID magnetometer. A sample in which BSCCO was coated on the outside of a cylindrical Ag substrate exhibited larger noise levels than that with a sample in which BSCCO was coated on the inside of the Ag cylinder. The difference is explained by the thermally driven (Johnson) noise from the Ag substrate. A sample with the Ag cylinder outside the superconductor and samples with MgO substrates inside the superconductor showed good performance with a shielding factors of 10-8 and internal noise levels which did not exceed the DC SQUID magnetometer resolution (5 fTrms/Hz) at 4.2 K. In addition, the flux relaxation noise of BSCCO superconducting shields was estimated from the relaxation behavior of BSCCO.

  • A Real-Time Scheduler Using Neural Networks for Scheduling Independent and Nonpreemptable Tasks with Deadlines and Resource Requirements

    Ruck THAWONMAS  Norio SHIRATORI  Shoichi NOGUCHI  

     
    PAPER-Bio-Cybernetics

      Vol:
    E76-D No:8
      Page(s):
    947-955

    This paper describes a neural network scheduler for scheduling independent and nonpreemptable tasks with deadlines and resource requirements in critical real-time applications, in which a schedule is to be obtained within a short time span. The proposed neural network scheduler is an integrate model of two Hopfield-Tank neural network medels. To cope with deadlines, a heuristic policy which is modified from the earliest deadling policy is embodied into the proposed model. Computer simulations show that the proposed neural network scheduler has a promising performance, with regard to the probability of generating a feasible schedule, compared with a scheduler that executes a conventional algorithm performing the earliest deadline policy.

  • Breast Tumor Classification by Neural Networks Fed with Sequential-Dependence Factors to the Input Layer

    Du-Yih TSAI  Hiroshi FUJITA  Katsuhei HORITA  Tokiko ENDO  Choichiro KIDO  Sadayuki SAKUMA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E76-D No:8
      Page(s):
    956-962

    We applied an artificial neural network approach identify possible tumors into benign and malignant ones in mammograms. A sequential-dependence technique, which calculates the degree of redundancy or patterning in a sequence, was employed to extract image features from mammographic images. The extracted vectors were then used as input to the network. Our preliminary results show that the neural network can correctly classify benign and malignant tumors at an average rate of 85%. This accuracy rate indicates that the neural network approach with the proposed feature-extraction technique has potential utility in the computer-aided diagnosis of breast cancer.

  • Fabrication of Bi-Sr-Ca-Cu-O/Barrier/Bi-Sr-Ca-Cu-O Junction by Treatment with Carbonated Water

    Shinichiro KOBA  Moriaki UCHIYA  Akio NAKAO  Satoru HIGO  Iwazo KAWANO  Tetsuya OGUSHI  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1231-1235

    The barrier-layer was successfully fabricated for a preparation of tunneling junction using high Tc oxidesuperconductor such as Bi-Sr-Ca-Cu-O system. Bi2Sr2Ca2Cu3Ox films were used for both superconducting electrodes and the barrier was mainly Bi2Sr2CaCu2O and the rest that was formed by effects of de-calcium from the first sputtered (2223) film. The reaction of de-calcium occurred immersing it in carbonated water. The change of (2223) phase of BSCCO was confirmed with a comparison of the intensity of X-ray diffraction. The superconductive transition temperature of the junction is different from that of the single film (2223) which had no treatment with carbonated water. Zero-bias-currents through fabricated barrier are observed and the critical currents depend on temperature so far as measured temperature region of 79 K-72 K.

  • Research Topics and Results on Analysis and Diagnosis of Linear Circuits by Japanese Researchers in These Twenty Years

    Shoji SHINODA  

     
    PAPER

      Vol:
    E76-A No:7
      Page(s):
    1097-1110

    This paper reviews the historical aspect of contributions on the theory of analysis and diagnosis of linear circuits, which have been made by Japanese researchers in these twenty years. On papers of diagnosis, those related to element-value solvability (or determinability) are mainly reviewed. Some important problems are suggested.

  • Aperture Illumination Control in Radial Line Slot Antennas

    Masaharu TAKAHASHI  Jun-ichi TAKADA  Makoto ANDO  Naohisa GOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E76-B No:7
      Page(s):
    777-783

    A radial line slot antenna (RLSA) is a high gain and high efficiency planar array. A single-layered RLSA is much simple in structure but the slot length must be varied to synthesize uniform aperture illumination. These are now commercialized for 12GHz band DBS reception. In RLSAs, considerable power is dissipated in the termination as is common to other traveling wave antennas; the uniform aperture illumination is not the optimum condition for high gain in RLSAs. Authors proposed a theoretical method reducing the termination loss for further efficiency enhancement. This paper presents the measured performances of the SL-RLSAs of this design with non-uniform aperture illumination. The efficiency enhancement of about 10% is observed; the measured gain of 36.7dBi (87%) and 32.9dBi (81%) for a 0.6mφ and 0.4mφ antennas respectively verify this technique.

  • An Efficient Fault Simulation Method for Reconvergent Fan-Out Stem

    Sang Seol LEE  Kyu Ho PARK  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    771-775

    In this paper, we present an efficient method for the fault simulation of the reconvergent fan-out stem. Our method minimizes the fault propagating region by analyzing the topology of the circuit, whose region is smaller than that of Tulip's. The efficiency of our method is illustrated by experimental results for a set of benchmark circuits.

  • FDTD Method Analysis of Mutual Coupling between Microstrip Antennas

    Kazuhiro UEHARA  Kenichi KAGOSHIMA  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    762-764

    We analyze the mutual coupling between two microstrip antennas (MSAs) with the finite-difference time-domain (FDTD) method. It is suitable for substrates which have a complex configuration or include feed line structures. The mutual coupling between two MSAs on discontinuous orthogonal substrates is successfully calculated.

  • Synthesis of Testable Sequential Circuits with Reduced Checking Sequences

    Satoshi SHIBATANI  Kozo KINOSHITA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    739-746

    The test pattern generation for sequential circuits is more difficult than that for combinational circuits due to the presence of memory elements. Therefore we proposed a method for synthesizing sequential circuits with testability in the level of state transition table. The state transition table is augmented by adding extra two inputs so that it possesses a distinguishing sequence, a synchronizing sequence, and transfer sequences of short length. In this case the checking sequence which do a complete verification of the circuit can be test pattern. The checking sequence have been impractical due to the longer checking sequence required. However, in this paper, we have discussed the condition to reduce the length of checking sequence, then by using suitable state assignment codes sequential circuits with much shorter checking sequences can be realized. A heuristic algorithm of the state assignment which reduce the length of checking sequence is proposed and the algorithm and reduced checking sequence are presented with simple example. The state assignment is very simple with the state matrix which represents the state transition. Furthermore some experimental results of automated synthesis for the MCNC Logic Synthesis Workshop finite state machine benchmark set have shown that the state assignment procedure is efficient for reducing checking sequences.

22041-22060hit(22683hit)