The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

22401-22420hit(22683hit)

  • A Markovian Imperfect Debugging Model for Software Reliability Measurement

    Koichi TOKUNOH  Shigeru YAMADA  Shunji OSAKI  

     
    PAPER-Reliability, Availability and Vulnerability

      Vol:
    E75-A No:11
      Page(s):
    1590-1596

    Actual debugging actions during the testing phase in the software development and the operation phase are not always performed perfectly. In other words, all detected software faults are not corrected and removed certainly. Generally, this is called imperfect debugging. In this paper, we discuss a software reliability growth model considering imperfect debugging that faults are not always corrected/removed when they are detected. Defining a random variable representing the cumulative number of faults corrected up to a specified testing time, this model is described by a semi-Markov process. We derive various quantitative measures for software reliability assessment and show their numercal examples.

  • An Acyclic Expansion-Based Protocol Verification for Communications Software

    Hironori SAITO  Yoshiaki KAKUDA  Toru HASEGAWA  Tohru KIKUNO  

     
    PAPER

      Vol:
    E75-B No:10
      Page(s):
    998-1007

    This paper presents a protocol verification method which verifies that the behaviors of a protocol meet requirements. In this method, a protocol specification is expressed as Extended Finite State Machines (EFSM's) that can handle variables, and requirements are expressed using a branching-time temporal logic for a concise and unambiguous description. Using the acyclic expansion algorithm extended such that it can deal with EFSM's, the verification method first generates a state transition graph consisting of executable transitions for each process. Then a branching-time temporal logic formula representing a requirement is evaluated on one of the generated graphs which is relevant to the requirement. An executable state transition graph for each process is much smaller than a global state transition graph which has been used in the conventional verification techniques to represent the behaviors of the whole protocol system consisting of all processes. The computation for generating the graphs is also reduced to much extent for a large complex protocol. As a result, the presented method achieves efficient verification for requirements regarding a state of a process, transmission and reception of messages by a process, varibales of a process and sequences that interact among processes. The validity of the method is illustrated in the paper by the verification of a path-updating protocol for requirements such as process state reachability or fair termination among processes.

  • Petri Net Based Programming System for FMS

    Yoichi NAGAO  Hideaki OHTA  Hironobu URABE  Sadatoshi KUMAGAI  

     
    INVITED PAPER

      Vol:
    E75-A No:10
      Page(s):
    1326-1334

    This paper describes a programming system, K-NET for the development of control software for flexible manufacturing systems composed of robots, numerically-controlled machines, transfer machines and automatic storage/retrieval systems. K-NET is based on a high-level Petri net which makes it simple to express operational functions such as synchronization, interlock and concurrence in sequence control. Petri net in K-NET is colored one in which tokens have attributes, and timed one which can provide a notion of stochastic time. K-NET provides many kinds of boxes having specific functions, and gates specified the firing condition and the token flow control with IF-THEN rules. On the other hand, procedural language can be also used for information processing. K-NET can support all development stages including general design, detailed design, programming and testing. K-NET has an editor to input control specifications expressed with Petri net; a simulator to verify edited specifications; a generator to convert the net to C source programs for a computer or to ladder diagrams for a programmable controller; a reporter to print control specifications; and a monitor to display controller status in real-time. K-NET has been used in the development of control software for an automated guided vehicle system, and results show a 2/3rds cost-saving over development with conventional methods in which only procedural language is used.

  • A Novel 32-bit RISC Microprocessor for Embedded Systems

    Otto MÜLLER  

     
    PAPER-RISC Technologies

      Vol:
    E75-C No:10
      Page(s):
    1196-1201

    The paper describes a novel 32-bit RISC microprocessor architecture for embedded systems. Variable-length instructions of 16, 32 or 48 bits provide compact code since the majority of instructions are 16 bits in length. The basic instruction format of 16 bits allows only 2 register adresses of 5 bits each; however, it is shown that the overhead in the instruction count is only between 14% and is far outweighed by the savings in program size. The register set provides addressing of 16 global and up to max. 16 local registers per stack frame in a register stack of 64 registers. The stack frames are of variable length with a variable overlap for parameter passing. A load/store architecture is used; memory accesses are pipelined. Nearly all instructions execute in a single cycle. A two-stage pipeline (decode/execute) minimizes wait cycles after pipeline breaks due to branches. An instruction cache of 128 bytes employs an efficient look-ahead algorithm and is quickly updated in case of a cache miss. The µP is implemented in 1.2 µm CMOS on a die of 47 mm2. Power dissipation is only 0.5 W. The development environment is PC-based.

  • A New Array Architecture for 16 Mb DRAMs with Special Page Mode

    Masaki TSUKUDE  Tsukasa OISHI  Kazutami ARIMOTO  Hideto HIDAKA  Kazuyasu FUJISHIMA  

     
    PAPER-Integrated Electronics

      Vol:
    E75-C No:10
      Page(s):
    1267-1274

    An improved array architecture to realize fast access, low power dissipation, and wide operating margin, for the 16 Mbit DRAM is proposed. A high speed access is obtained by the fully embedded sense drive scheme for the RAS access time (tRAC), and the special page mode with the hierarchical I/O data bus lines and multi-purpose-register (MPR) for the column address access time (tCAA). A low power dissipation and wide operating margin are obtained by the improved twisted-bit-line (TBL) architecture with double dummy canceling. The 16 Mb DRAM using these architectures has 38 ns tRAC, 14 ns tCAA and 75 mA power dissipation at the typical condition.

  • Three-Dimensional Dynamics of Heavy-Ion Induced CMOS Latchup

    Hideyuki IWATA  Mitsuo YASUHIRA  Shinji ODANAKA  Takashi OHZONE  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E75-C No:10
      Page(s):
    1281-1290

    This paper presents the dynamics of heavy-ion induced latchup turn-on behavior in CMOS structures using a three-dimensional and transient device simulation. The three-dimensional effects of parasitic devices in a CMOS structure during latchup turn-on are discussed in detail when a heavy-ion strikes the CMOS structure. For different incident types, the dynamics of latchup turn-on behaviors are also simulated. Moreover, latchup immunities of the CMOS structure obtained by two- and three-dimensional calculations are compared for the different incident types. This result suggests that the rough relation between latchup immunity and heavy-ion incident energy can be estimated using a two-dimensional simulation.

  • A Petri-Net-Based Programming Environment and Its Design Methodology for Cooperating Discrete Event Systems

    Naoshi UCHIHIRA  Mikako ARAMI  Shinichi HONIDEN  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1335-1347

    This paper describes MENDELS ZONE, a Petri-net-based concurrent programming environment, which is especially suitable for cooperating discrete event systems. MENDELS ZONE adopts MENDEL net, which is a type of high level (hierarchical colored) Petri net. One of the characteristics of the MENDEL nets is a process-oriented hierarchy like CCS, which is different from the subnet-oriented hierarchy in the Jensen's hierarchical colored Petri net. In a process-oriented hierarchy, a hierarchical unit is a process, which is more natural for cooperating and decentralized discrete event control systems. This paper also proposes a design methodology for MENDEL nets. Although many Petri net tools have been proposed, most tools support only drawing, simulation, and analysis of Petri nets; few tools support the design methodology for Petri nets. While Petri nets are good final design documents easy to understand, analyzable, and executable it is often difficult to write Petri nets directly in an earlier design phase when the system structure is obscure. A proposed design methodology makes a designer to construct MENDEL nets systematically using causality matrices and temporal logic. Furthemore, constructed MENDEL nets can be automatically compiled into a concurrent programming language and executed on a parallel computer.

  • Optimal Cycle Time and Facility Utilization of Production Systems Including Repetitive Process with Set-up Time Modelled by Timed Marked Graphs

    Masaki AKAZA  Dong-Ik LEE  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1385-1393

    A job shop system typically seen in flexible manufacturing systems (FMS) is a system composed of a set of machines and a various kind of jobs processed with the machines. A production system of semiconductor fabrication is an example of job shop systems, which has main features of repetitive processes of one part and set-up times required for machines processing different types of parts. On the other hand, timed Petri nets are used for modelling and analyzing a wide variety of discrete event systems. There are many applications of timed Petri nets to the scheduling problems of job shop systems. The performance evaluation and steady state behaviors are studied by using the maximum cycle time of timed marked graphs. The aim of this paper is to propose a new model for production systems including repetitive processes and set-up time requirements which enables the quantitative analysis of real time system performance. In job shop systems such as a semiconductor fabrication system, it takes considerable amount of set-up time to prepare different types of chemical reactions and the model should take account of a set-up time for each machine. We focus upon the relationship between facility utilization factor and production cycle time in the steady state. In the proposed model, the minimum total set-up time can be attained. Quantitative relationship between utilization factor and production cycle time is derived by using the proposed model. A utilization factor of a system satisfying a given limit of the cycle time is evaluated, and the improvement of the utilization factor is considered. Conversely, we consider the improvement of the cycle time of a system satisfying a given limit of utilization factor.

  • An Implementation Method of IN Functional Entities on Top of Distributed Operating System and Its Performance Evaluation Using Experimental System

    Masahiko FUJINAGA  Toshihiko KATO  Kenji SUZUKI  

     
    PAPER

      Vol:
    E75-B No:10
      Page(s):
    1043-1051

    In order to make the implementation of network components flexible and cost effective, it is required to use widely available technologies as the implementation platform. The distributed operating systems can be adopted as such a platform, because they allow to implement a network component using multiple computers connected through a local area network. In this paper, we focus on the Intelligent Network (IN) whose network components are modelled as Functional Entities (FEs), and describe an implementation method of FEs using distributed operating systems. Our method is summarized as follows: The remote procedure call (RPC) is used for the access transparent inter-process communication. The lightweight process mechanism is used for handling concurrent requests. CCF/SSF (Call Control Function/Service Control Function) and SDF (Service Data Function) are implemented as an SSF server and an SDF server, respectively. SCF (Service Control Function) is composed of a Service Dispatcher and a set of Service Executors. The Service Dispatcher accepts all the requests for IN call processing and dispatches them to appropriate Service Executors. Service Executors are created for the individual IN services and execute the service logics. SDF server and Service Executor may be replicated for load partitioning.This paper has also described the implementation of experimental system supporting "Freephone" service based on our method, and showed the performance evaluation of the experimental system in terms of the real-time and concurrent call processing of IN services. We used Mach and SUN OS as a platform for implementing the servers for FEs. The experimental system using four workstations shows that it can handle up to 170IN calls in one second with the additional response time of less than 200msec, which is small enough compared with the response time for the basic connection control. Those results prove that our method is feasible for implementing practical FEs.

  • A 34.8 GHz 1/4 Static Frequency Divider Using AlGaAs/GaAs HBTs

    Yoshiki YAMAUCHI  Osaake NAKAJIMA  Koichi NAGATA  Hiroshi ITO  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1105-1109

    A one-by-four static frequency divider using AlGaAs/GaAs heterojunction bipolar transistors (HBTs) was designed to operate at a bias condition that gave a maximum cutoff frequency fT and a maximum oscillation freqency fmax. The fT and fmax applied to the divider were 68 GHz and 56 GHz, respectively. As a result of the tests, the circuit operated up to 34.8 GHz at a power supply voltage of 9 V and power dissipation of 495 mW. A low minimum input signal power level of 0 dBm was also achieved.

  • A 1-K ECL Gate Array Implemented with Fully Self-Aligned AlGaAs/GaAs Heterojunction Bipolar Transistors

    Nobuyuki HAYAMA  Yuzuru TOMONOH  Hideki TAKAHASHI  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1121-1126

    The paper describes the design considerations, fabrication process and performance of the newly developed 1-K ECL gate array implemented with fully self-aligned AlGaAs/GaAs hoterojunction bipolar transistors (HBTs). This gate array consists of 960 three-input OR/NOR ECL basic gates. It contains about 7,600 transistors in a chip area 8.15-mm8.45-mm. The basic (FI=FO=1, wiring length L=0-mm) and loaded (FI=FO=3, L=1-mm) gates exhibit delay times of 33-ps and 82-ps, respectively, with 8.5-mW/gate power dissipation. From the measured values, fan-in, fan-out and wiring delay times of 9-ps/FI, 7-ps/FO and 17-ps/mm are estimated, respectively. These results are in good agreement with the designed results obtained using "SPICE" simulation.

  • The Minimum Initial Marking Problem for Scheduling in Timed Petri Nets

    Toshimasa WATANABE  Takenobu TANIDA  Masahiro YAMAUCHI  Kenji ONAGA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1407-1421

    The subject of the paper is the minimum initial marking problem for scheduling in timed Petri net PN: given a vector X of nonnegative integers, a P-invariant Y of PN and a nonnegative integer π, find an initial marking M minimizing the value YtrM among those initial marking M such that there is a scheduling σ having the total completion time τ(σ)π with respect M , X and PN (a sequence of transitions, with the first transition firable on M , such that every transition t can fire prescribed number X(t) of times). The paper shows NP-hardness of the problem and proposes two approximation algorithms with their experimental evaluation.

  • A Study of System Resource Arrangement for a Concatenated Client Server System by Stochastic Petri Nets

    Satoshi MORIGUCHI  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1360-1368

    Recent trends in down-sizing have resulted in the development of client server systems for many industries. This paper considers the application of stochastic Petri nets with general firing times for modeling of a concatenated client server system and the use of discrete-event simulation methods for stochastic Petri nets to study its behavior. This approach enables us to assess the most appropriate resource set of a concatenated client server system on the quantitative basis of the performability and the occurrence of system down conditions. Thus, system consultation, a new application of stochastic Petri nets, is presented.

  • Diagnosis of Computer Systems by Stochastic Petri Nets Part (Application)

    Satoshi MORIGUCHI  Gerald S. SHEDLER  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1369-1377

    The pursuit of higher availability has resulted in the development of fault tolerant systems for many industries. However, system characteristics that can be perceived by the customer have never been diagnosed quantitatively. This paper considers the application of stochastic Petri nets with general firing times to modeling of a fault tolerant system and the use of discrete-event simulation methods for stochastic Petri nets to study the behavior of the system. The stochastic Petri net model incorporates factors that compose the system as well as those that accompany it, including RAS characteristics of products, personnel arrangements, and system management. By modeling the behavioral aspect of each factor, it is possible to diagnose a fault tolerant system quantitatively on the basis of customer impact.

  • Computer-Aided Stepwise Service Creation for the Intelligent Network

    Yoshihiro NIITSU  Osamu MIZUNO  

     
    PAPER

      Vol:
    E75-B No:10
      Page(s):
    969-977

    This paper describes a computer-aided service creation environment (CSCE) for the intelligent network which supports easier graphical specification description for service designers of various skill levels, and service logic program (SLP) generation. The CSCE design concept consists of stepwise service specification description and SLP generation, message sequence chart description language (LSDL: Layered Service Specification Description Language), computer-aided sophisticated interface (IEDs: Intelligent Editors), automatic specification verification and rapid service prototyping. Service specification is described by three steps and in LSDL or SDL, and SLPs are generated through three converters referring to two knowledge databases. Three tests are conducted on the specifications described. The effectiveness of the CSCE is demonstrated by the results that the amount of SLP descriptions for five new practical services using the CSCE is reduced to less than about 20% in LSDL description, compared to C language description.

  • Centralized Virtual Path Bandwidth Allocation Scheme for ATM Networks

    Michael LOGOTHETIS  Shigeo SHIODA  

     
    PAPER-Communication Networks and Service

      Vol:
    E75-B No:10
      Page(s):
    1071-1080

    This paper deals with a network architecture based on a backbone network, using ATM switches (ATM-SW) and ATM Cross-Connect Systems (ATM-XC). The backbone network is efficiently utilized by multiple-routing scheme. The performance of the network is controlled, exploiting the concept of Virtual Paths (VP) in ATM technology. The network is controlled by allocating the bandwidth of VPs so as to minimize the worst call blocking probability of all ATM-SW pairs, under the constraints of the ATM-SW capacities and the bandwidths of transmission paths in the backbone network. To improve network performance, we use a trunk reservation scheme among service classes. We propose a heuristic approach to solve the problem of non-linear integer programming. Evaluation of the proposed optimization scheme, in comparison to other optimal methods, shows the efficiency of the present scheme.

  • A Cryogenic HEMT Pseudorandom Number Generator

    Yoshimi ASADA  Yasuhiro NAKASHA  Norio HIDAKA  Takashi MIMURA  Masayuki ABE  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1133-1139

    We developed a 32-bit pseudorandom number generator (RNG) operating at liquid nitrogen temperature based on HEMT ICs. It generates maximum-length-sequence codes whose primitive polynomial is X47+X42+1 with the period of 247-1 clock cycle. We designed and fabricated three kinds of cryogenic HEMT IC for this system: A 1306-gate controller IC, a 3319-gate pseudorandom number generator (RNG) IC, and a buffer IC containing a 4-kb RAM and 514 gates. We used 0.6-µm gate-length Se-doped GaAlAs/GaAs HEMTs. Interconnects were Al for the first layer and Au/Pt/Ti for the second layer with a SiON insulator between them. The HEMT ICs have direct-coupled FET logic (DCFL) gates internally and emitter-coupled logic (ECL) compatible input-putput buffers. The unloaded basic delay of the DCFL gate was 17 ps/gate with a power consumption of 1.4 mW/gate at liquid nitrogen temperature. We used an automatic cryogenic wafer probe we developed and an IC tester for function tests, and used a high-speed performance measuring system we also developed with a bandwidth of more than 20 GHz for high-speed performance tests. Power dissipations were 3.8 W for the controller IC, 4.5 W for the RNG IC, and 3.0 W for the buffer IC. The RNG IC, the largest of the three HEMT ICs, had a maximum operating clock rate of 1.6 GHz at liquid nitrogen temperature. We submerged a specially developed zirconium ceramic printed circuit board carrying the HEMT ICs in a closed-cycle cooling system. The HEMT ICs were flip-chip-packaged on the board with bumps containing indium as the principal component. We confirmed that the RNG system operates at liquid nitrogen temperature and measured a minimum system clock period of 1.49 ns.

  • A 48-Lead Film Carrier for Ultra-High Speed GaAs Digital Integrated Circuits

    Chiaki TAKUBO  Hiroshi TAZAWA  Mamoru SAKAKI  Yoshiharu TSUBOI  Masao MOCHIZUKI  Hirohiko IZUMI  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1172-1178

    A film carrier with 48 peripheral-contacts, which is applicable to ultra-high speed GaAs digital integrated circuits (ICs) with a more than 10 Gbps operation, has been developed. The film carrier has been realized using the following newly developed techniques; (1) wave guides with a well-controlled characteristic impedance of 50 Ω, (2) precise vias of as small as 50 µm diameter conducting both sides of grounded metal planes on a polyimide film, and (3) a feed-through structure for high speed input signals with good impedance matching. The film carrier was molded by resin after ILB (inner lead bonding) to a chip with a copper plate heat spreader. As an application, the film carrier has been applied to a 3 Gbps operational 4-bit GaAs multiplexer IC, and has been proved to have excellent high-frequency characteristics.

  • Simplification to Enhance Comprehensibility of Communications Software Descriptions Written in a Procedural Language

    Yasushi WAKAHARA  Atsushi ITO  Eiji UTSUNOMIYA  Fumio NITTA  

     
    INVITED PAPER

      Vol:
    E75-B No:10
      Page(s):
    942-948

    The purpose of this paper is to propose a technique to simplify the communications software descriptions written in a procedural language in order to enhance their comprehensibility. Although such a technique was not much studied and discussed in the past, this technique is important to realize high productivity and high quality of the communications software by reducing the complexity of the software description. This paper firstly systematically presents various simplification methods with their principles for the descriptions of the communications software from the viewpoints of their layout, syntactical structures etc. Then, it describes a simplification support system based on these principles for the software specifications written in SDL. Lastly, this paper demonstrates the usefulness and effectiveness of the proposed simplification technique by analyzing the evaluation results of the simplification system.

  • Computer-Aided Analysis of GaAs MESFETs with p-Buffer Layer on the Semi-Insulating Substrate

    Kazushige HORIO  Naohisa OKUMURA  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1140-1145

    GaAs MESFETs with a p-buffer layer (or a buried p-layer) are important devices for high-speed GaAs ICs. To study what conditions are required as a good substrate for ICs, we have investigated, by two-dimensional simulation, small-signal parameters and drain-current transients of GaAs MESFETs with a p-buffer layer on the semi-insulating substrate. It is shown that the introduction of a p-buffer layer is effective to improve the transconductance and the cuttoff frequeycy. These parameters are not degrade even if the p-layer doping is increased and a neurtral p-region exists. It is also shown that drain-current drifts and hysteresis in I-V curves can occur in a case with a p-buffer layer, too. It is concluded that the introduction of a relatively highly-doped p-layer on a substrate with low acceptor and electron trap (EL2) densities is effective to realize the stable and high performance of GaAs MESFETs.

22401-22420hit(22683hit)