The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

481-500hit(22683hit)

  • Stack-Type Enzyme Biofuel Cell Using a Cellulose Nanofiber Sheet to Absorb Lactic Acid from Human Sweat as Fuel

    Satomitsu IMAI  Atsuya YAMAKAWA  

     
    BRIEF PAPER

      Pubricized:
    2022/11/28
      Vol:
    E106-C No:6
      Page(s):
    258-261

    An enzymatic biofuel cell (BFC) that uses lactic acid in human sweat as fuel to generate electricity is an attractive power source for wearable devices. A BFC capable of generating electricity with human sweat has been developed. It comprised a flexible tattoo seal type battery with silver oxide vapor deposited on a flexible material and conductive carbon nanotubes printed on it. The anode and cathode in this battery were arranged in a plane (planar type). This work proposes a thin laminated enzymatic BFC by inserting a cellulose nanofiber (CNF) sheet between two electrodes to absorb human sweat (stack-type). Optimization of the anode and changing the arrangement of electrodes from planar to stack type improved the output and battery life. The stack type is 43.20μW / cm2 at 180mV, which is 1.25 times the maximum power density of the planar type.

  • Biofuel Cell Fueled by Decomposing Cellulose Nanofiber to Glucose by Using Cellulase Enzyme

    Ryutaro TANAKA  Satomitsu IMAI  

     
    BRIEF PAPER

      Pubricized:
    2022/11/28
      Vol:
    E106-C No:6
      Page(s):
    262-265

    Conventional enzymatic biofuel cells (EBFCs) use glucose solution or glucose from human body. It is desirable to get glucose from a substance containing glucose because the glucose concentration can be kept at the optimum level. This work developed a biofuel cell that generates electricity from cellulose, which is the main components of plants, by using decomposing enzyme of cellulase. Cellulose nanofiber (CNF) was chosen for the ease of decomposability. It was confirmed by the cyclic voltammetry method that cellulase was effective against CNF. The maximum output of the optimized proposed method was 38.7 μW/cm2, which was 85% of the output by using the glucose solution at the optimized concentration.

  • Terahertz Radiations and Switching Phenomena of Intrinsic Josephson Junctions in High-Temperature Superconductors: Josephson Phase Dynamics in Long- and Short-Ranged Interactions Open Access

    Itsuhiro KAKEYA  

     
    INVITED PAPER

      Pubricized:
    2022/12/07
      Vol:
    E106-C No:6
      Page(s):
    272-280

    Studies on intrinsic Josephson junctions (IJJs) of cuprate superconductors are reviewed. A system consisting of a few IJJs provides phenomena to test the Josephson phase dynamics and its interaction between adjacent IJJs within a nanometer scale, which is unique to cuprate superconductors. Quasiparticle density of states, which provides direct information on the Cooper-pair formation, is also revealed in the system. In contrast, Josephson plasma emission, which is an electromagnetic wave radiation in the sub-terahertz frequency range from an IJJ stack, arises from the synchronous phase dynamics of hundreds of IJJs coupled globally. This review summarizes a wide range of physical phenomena in IJJ systems having capacitive and inductive couplings with different nanometer and micrometer length scales, respectively.

  • Evaluation of Performance and Power Consumption on Supercomputer Fugaku Using SPEC HPC Benchmarks

    Yuetsu KODAMA  Masaaki KONDO  Mitsuhisa SATO  

     
    PAPER

      Pubricized:
    2022/12/12
      Vol:
    E106-C No:6
      Page(s):
    303-311

    The supercomputer, “Fugaku”, which ranked number one in multiple supercomputing lists, including the Top500 in June 2020, has various power control features, such as (1) an eco mode that utilizes only one of two floating-point pipelines while decreasing the power supply to the chip; (2) a boost mode that increases clock frequency; and (3) a core retention feature that turns unused cores to the low-power state. By orchestrating these power-performance features while considering the characteristics of running applications, we can potentially gain even better system-level energy efficiency. In this paper, we report on the performance and power consumption of Fugaku using SPEC HPC benchmarks. Consequently, we confirmed that it is possible to reduce the energy by about 17% while improving the performance by about 2% from the normal mode by combining boost mode and eco mode.

  • An Efficient Reference Image Sharing Method for the Image-Division Parallel Video Encoding Architecture

    Ken NAKAMURA  Yuya OMORI  Daisuke KOBAYASHI  Koyo NITTA  Kimikazu SANO  Masayuki SATO  Hiroe IWASAKI  Hiroaki KOBAYASHI  

     
    PAPER

      Pubricized:
    2022/11/29
      Vol:
    E106-C No:6
      Page(s):
    312-320

    This paper proposes an efficient reference image sharing method for the image-division parallel video encoding architecture. This method efficiently reduces the amount of data transfer by using pre-transfer with area prediction and on-demand transfer with a transfer management table. Experimental results show that the data transfer can be reduced to 19.8-35.3% of the conventional method on average without major degradation of coding performance. This makes it possible to reduce the required bandwidth of the inter-chip transfer interface by saving the amount of data transfer.

  • Permittivity Estimation Based on Transmission Coefficient for Gaussian Beam in Free-Space Method

    Koichi HIRAYAMA  Yoshiyuki YANAGIMOTO  Jun-ichiro SUGISAKA  Takashi YASUI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/12/09
      Vol:
    E106-C No:6
      Page(s):
    335-343

    In a free-space method using a pair of horn antennas with dielectric lenses, we demonstrated that the permittivity of a sample can be estimated with good accuracy by equalizing a measured transmission coefficient of a sample to a transmission coefficient for a Gaussian beam, which is approximately equal to the transmission coefficient for a plane wave multiplied by a term that changes the phase. In this permittivity estimation method, because the spot size at the beam waist in a Gaussian beam needs to be determined, we proposed an estimation method of the spot size by employing the measurement of the Line in Thru-Reflect-Line calibration; thus, no additional measurement is required. The permittivity estimation method was investigated for the E-band (60-90 GHz), and it was demonstrated that the relative permittivity of air with a thickness of 2mm and a sample with the relative permittivity of 2.05 and a thickness of 1mm is estimated with errors less than ±0.5% and ±0.2%, respectively. Moreover, in measuring a sample without displacing the receiving horn antenna to avoid the error in measurement, we derived an expression of the permittivity estimation for S parameters measured using a vector network analyzer, and demonstrated that the measurement of a sample without antenna displacement is valid.

  • Implementation of Fully-Pipelined CNN Inference Accelerator on FPGA and HBM2 Platform

    Van-Cam NGUYEN  Yasuhiko NAKASHIMA  

     
    PAPER-Computer System

      Pubricized:
    2023/03/17
      Vol:
    E106-D No:6
      Page(s):
    1117-1129

    Many deep convolutional neural network (CNN) inference accelerators on the field-programmable gate array (FPGA) platform have been widely adopted due to their low power consumption and high performance. In this paper, we develop the following to improve performance and power efficiency. First, we use a high bandwidth memory (HBM) to expand the bandwidth of data transmission between the off-chip memory and the accelerator. Second, a fully-pipelined manner, which consists of pipelined inter-layer computation and a pipelined computation engine, is implemented to decrease idle time among layers. Third, a multi-core architecture with shared-dual buffers is designed to reduce off-chip memory access and maximize the throughput. We designed the proposed accelerator on the Xilinx Alveo U280 platform with in-depth Verilog HDL instead of high-level synthesis as the previous works and explored the VGG-16 model to verify the system during our experiment. With a similar accelerator architecture, the experimental results demonstrate that the memory bandwidth of HBM is 13.2× better than DDR4. Compared with other accelerators in terms of throughput, our accelerator is 1.9×/1.65×/11.9× better than FPGA+HBM2 based/low batch size (4) GPGPU/low batch size (4) CPU. Compared with the previous DDR+FPGA/DDR+GPGPU/DDR+CPU based accelerators in terms of power efficiency, our proposed system provides 1.4-1.7×/1.7-12.6×/6.6-37.1× improvement with the large-scale CNN model.

  • Alternative Ruleset Discovery to Support Black-Box Model Predictions

    Yoichi SASAKI  Yuzuru OKAJIMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/03/09
      Vol:
    E106-D No:6
      Page(s):
    1130-1141

    The increasing attention to the interpretability of machine learning models has led to the development of methods to explain the behavior of black-box models in a post-hoc manner. However, such post-hoc approaches generate a new explanation for every new input, and these explanations cannot be checked by humans in advance. A method that selects decision rules from a finite ruleset as explanation for neural networks has been proposed, but it cannot be used for other models. In this paper, we propose a model-agnostic explanation method to find a pre-verifiable finite ruleset from which a decision rule is selected to support every prediction made by a given black-box model. First, we define an explanation model that selects the rule, from a ruleset, that gives the closest prediction; this rule works as an alternative explanation or supportive evidence for the prediction of a black-box model. The ruleset should have high coverage to give close predictions for future inputs, but it should also be small enough to be checkable by humans in advance. However, minimizing the ruleset while keeping high coverage leads to a computationally hard combinatorial problem. Hence, we show that this problem can be reduced to a weighted MaxSAT problem composed only of Horn clauses, which can be efficiently solved with modern solvers. Experimental results showed that our method found small rulesets such that the rules selected from them can achieve higher accuracy for structured data as compared to the existing method using rulesets of almost the same size. We also experimentally compared the proposed method with two purely rule-based models, CORELS and defragTrees. Furthermore, we examine rulesets constructed for real datasets and discuss the characteristics of the proposed method from different viewpoints including interpretability, limitation, and possible use cases.

  • Design and Implementation of a Simulator to Emulate Elder Behavior in a Nursing Home

    You-Chiun WANG  Yi-No YAO  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2023/03/13
      Vol:
    E106-D No:6
      Page(s):
    1155-1164

    Many countries are facing the aging problem caused by the growth of the elderly population. Nursing home (NH) is a common solution to long-term care for the elderly. This paper develops a simulator to model elder behavior in an NH, which considers public areas where elders interact and imitates their general, group, and special activities. Elders have their preferences to decide activities taken by them. The simulator takes account of the movement of elders and abnormal events. Based on the simulator, two seeking methods are proposed for caregivers to search lost elders efficiently, which helps them fast find out elders who may incur accidents.

  • A Shallow SNN Model for Embedding Neuromorphic Devices in a Camera for Scalable Video Surveillance Systems

    Kazuhisa FUJIMOTO  Masanori TAKADA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2023/03/13
      Vol:
    E106-D No:6
      Page(s):
    1175-1182

    Neuromorphic computing with a spiking neural network (SNN) is expected to provide a complement or alternative to deep learning in the future. The challenge is to develop optimal SNN models, algorithms, and engineering technologies for real use cases. As a potential use cases for neuromorphic computing, we have investigated a person monitoring and worker support with a video surveillance system, given its status as a proven deep neural network (DNN) use case. In the future, to increase the number of cameras in such a system, we will need a scalable approach that embeds only a few neuromorphic devices in a camera. Specifically, this will require a shallow SNN model that can be implemented in a few neuromorphic devices while providing a high recognition accuracy comparable to a DNN with the same configuration. A shallow SNN was built by converting ResNet, a proven DNN for image recognition, and a new configuration of the shallow SNN model was developed to improve its accuracy. The proposed shallow SNN model was evaluated with a few neuromorphic devices, and it achieved a recognition accuracy of more than 80% with about 1/130 less energy consumption than that of a GPU with the same configuration of DNN as that of SNN.

  • I/O Performance Improvement of FHE Apriori with Striping File Layout Considering Storage of Intermediate Data

    Atsuki KAMO  Saneyasu YAMAGUCHI  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2023/03/13
      Vol:
    E106-D No:6
      Page(s):
    1183-1185

    Fully homomorphic encryption (FHE) enables secret computations. Users can perform computation using data encrypted with FHE without decryption. Uploading private data without encryption to a public cloud has the risk of data leakage, which makes many users hesitant to utilize a public cloud. Uploading data encrypted with FHE avoids this risk, while still providing the computing power of the public cloud. In many cases, data are stored in HDDs because the data size increases significantly when FHE is used. One important data analysis is Apriori data mining. In this application, two files are accessed alternately, and this causes long-distance seeking on its HDD and low performance. In this paper, we propose a new striping layout with reservations for write areas. This method intentionally fragments files and arranges blocks to reduce the distance between blocks in a file and another file. It reserves the area for intermediate files of FHE Apriori. The performance of the proposed method was evaluated based on the I/O processing of a large FHE Apriori, and the results showed that the proposed method could improve performance by up to approximately 28%.

  • Thermal-Comfort Aware Online Co-Scheduling Framework for HVAC, Battery Systems, and Appliances in Smart Buildings

    Daichi WATARI  Ittetsu TANIGUCHI  Francky CATTHOOR  Charalampos MARANTOS  Kostas SIOZIOS  Elham SHIRAZI  Dimitrios SOUDRIS  Takao ONOYE  

     
    INVITED PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    698-706

    Energy management in buildings is vital for reducing electricity costs and maximizing the comfort of occupants. Excess solar generation can be used by combining a battery storage system and a heating, ventilation, and air-conditioning (HVAC) system so that occupants feel comfortable. Despite several studies on the scheduling of appliances, batteries, and HVAC, comprehensive and time scalable approaches are required that integrate such predictive information as renewable generation and thermal comfort. In this paper, we propose an thermal-comfort aware online co-scheduling framework that incorporates optimal energy scheduling and a prediction model of PV generation and thermal comfort with the model predictive control (MPC) approach. We introduce a photovoltaic (PV) energy nowcasting and thermal-comfort-estimation model that provides useful information for optimization. The energy management problem is formulated as three coordinated optimization problems that cover fast and slow time-scales by considering predicted information. This approach reduces the time complexity without a significant negative impact on the result's global nature and its quality. Experimental results show that our proposed framework achieves optimal energy management that takes into account the trade-off between electricity expenses and thermal comfort. Our sensitivity analysis indicates that introducing a battery significantly improves the trade-off relationship.

  • Design of Full State Observer Based on Data-Driven Dual System Representation

    Ryosuke ADACHI  Yuji WAKASA  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    736-743

    This paper addresses an observer-design method only using data. Usually, the observer requires a mathematical model of a system for state prediction and observer gain calculation. As an alternative to the model-based prediction, the proposed predictor calculates the states using a linear combination of the given data. To design the observer gain, the data which represent dual systems are derived from the data which represent the original system. Linear matrix inequalities that depend on data of the dual system provides the observer gains.

  • User's Activities when Using Mobility as a Service — Results of the Smart Mobility Challenge Project 2020 and 2021 —

    Toshihisa SATO  Naohisa HASHIMOTO  

     
    INVITED PAPER

      Pubricized:
    2022/12/19
      Vol:
    E106-A No:5
      Page(s):
    745-751

    Mobility as a Service (MaaS) is expected to spread globally and in Japan as a solution for social issues related to transportation. Researchers have conducted MaaS trials in several cities. However, only a few trials have reached full-scale practical use. Therefore, it is essential to clarify issues such as the business model and user acceptability and seek solutions to social problems rather than simply conducting trials. This paper describes the introduction of a MaaS project supported by the Japanese government known as the “Smart Mobility Challenge” project, conducted in 2020 and 2021. We employed five themes necessary for social implementation from the first trial of this MaaS project. As a consortium, we also promoted regional demonstrations by soliciting regional applications based on these five themes. In addition, we conducted fundamental research using data from the MaaS projects to clarify local transportation issues in detail, collect residents' mobile behavior data, and assess the project's effects on the participant's happiness. We employed the life-space assessment method to investigate the spread of the residents' behavioral life-space resulting from using mobility services. The spread of the life-space mobility before and after using mobility services confirmed an expansion of the life-space because of specific services. Moreover, we conducted questionnaire surveys and clarified the relationships between life-space assessment, human characteristics, and subjective happiness using path analysis. We also conducted a persona-based approach in addition to objective data collection using GPS and wearable monitors and a web-based questionnaire. We found differences between the actual participants and participants assumed by local governments. We conducted interviews and developed tips for improving mobility service. We propose that qualitative data help clarify the image of mobility services that meet the residents' needs.

  • On Spectral Efficiency of OFDM Signals Based on Windowing

    Hideki OCHIAI  

     
    INVITED PAPER

      Pubricized:
    2022/12/19
      Vol:
    E106-A No:5
      Page(s):
    752-764

    We discuss the spectral efficiency of orthogonal frequency-division multiplexing (OFDM) signals widely adopted in practical systems from a viewpoint of their power spectral density property. Since the conventional OFDM does not make use of pulse shaping filter, its out-of-band (OOB) spectrum may not be negligible especially when the number of subcarriers is small. Thus, in practice, windowing is applied to mitigate OOB emission by smoothing the transition of consecutive OFDM symbols, but its effectiveness has not been well investigated. Furthermore, OFDM signal suffers from nonlinear distortion associated with its high signal peak-to-average power ratio (PAPR), which also leads to OOB radiation. We examine how power amplifier nonlinearity affects the spectral efficiency based on the theoretical results developed in the literature.

  • Performance Evaluation of Wi-Fi RTT Lateration without Pre-Constructing a Database

    Tetsuya MANABE  Kazuya SABA  

     
    PAPER

      Pubricized:
    2022/12/02
      Vol:
    E106-A No:5
      Page(s):
    765-774

    This paper proposes an algorithm for estimating the location of wireless access points (APs) in indoor environments to realize smartphone positioning based on Wi-Fi without pre-constructing a database. The proposed method is designed to overcome the main problem of existing positioning methods requiring the advance construction of a database with coordinates or precise AP location measurements. The proposed algorithm constructs a local coordinate system with the first four APs that are activated in turn, and estimates the AP installation location using Wi-Fi round-trip time (RTT) lateration and the ranging results between the APs. The effectiveness of the proposed algorithm is confirmed by conducting experiments in a real indoor environment consisting of two rooms of different sizes to evaluate the positioning performance of the algorithm. The experimental results showed the proposed algorithm using Wi-Fi RTT lateration delivers high smartphone positioning performance without a pre-constructed database or precise AP location measurements.

  • Image Segmentation-Based Bicycle Riding Side Identification Method

    Jeyoen KIM  Takumi SOMA  Tetsuya MANABE  Aya KOJIMA  

     
    PAPER

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    775-783

    This paper attempts to identify which side of the road a bicycle is currently riding on using a common camera for realizing an advanced bicycle navigation system and bicycle riding safety support system. To identify the roadway area, the proposed method performs semantic segmentation on a front camera image captured by a bicycle drive recorder or smartphone. If the roadway area extends from the center of the image to the right, the bicyclist is riding on the left side of the roadway (i.e., the correct riding position in Japan). In contrast, if the roadway area extends to the left, the bicyclist is on the right side of the roadway (i.e., the incorrect riding position in Japan). We evaluated the accuracy of the proposed method on various road widths with different traffic volumes using video captured by riding bicycles in Tsuruoka City, Yamagata Prefecture, and Saitama City, Saitama Prefecture, Japan. High accuracy (>80%) was achieved for any combination of the segmentation model, riding side identification method, and experimental conditions. Given these results, we believe that we have realized an effective image segmentation-based method to identify which side of the roadway a bicycle riding is on.

  • Evaluation of Non-GPS Train Localization Schemes Using a Commodity Smartphone with Built-In Sensors

    Masaya NISHIGAKI  Takaaki HASEGAWA  Yuki SAIGUSA  

     
    PAPER

      Pubricized:
    2022/11/04
      Vol:
    E106-A No:5
      Page(s):
    784-792

    In this paper, we compare performances of train localization schemes by the dynamic programming of various sensor information obtained from a smartphone attached to a train, and further discuss the most superior sensor information and scheme in this localization system. First, we compare the localization performances of single sensor information schemes, such as 3-axis acceleration information, acoustic information, 3-axis magnetic information, and barometric pressure information. These comparisons reveal that the lateral acceleration information input scheme has the best localization performance. Furthermore, we optimize each data fusion scheme and compare the localization performances of the data-fusion schemes using the optimal ratio of coefficients. The results show that the hybrid scheme has the best localization performance, with a root mean squared error (RMSE) of 12.2 m. However, there are no differences between the RMSEs of the input fusion scheme and 3-axis acceleration input scheme in the most significant three digits. Consequently, we conclude that the 3-axis acceleration input fusion scheme is the most reasonable in terms of simplicity.

  • Space Division Multiplexing Using High-Luminance Cell-Size Reduction Arrangement for Low-Luminance Smartphone Screen to Camera Uplink Communication

    Alisa KAWADE  Wataru CHUJO  Kentaro KOBAYASHI  

     
    PAPER

      Pubricized:
    2022/11/01
      Vol:
    E106-A No:5
      Page(s):
    793-802

    To simultaneously enhance data rate and physical layer security (PLS) for low-luminance smartphone screen to camera uplink communication, space division multiplexing using high-luminance cell-size reduction arrangement is numerically analyzed and experimentally verified. The uplink consists of a low-luminance smartphone screen and an indoor telephoto camera at a long distance of 3.5 meters. The high-luminance cell-size reduction arrangement avoids the influence of spatial inter-symbol interference (ISI) and ambient light to obtain a stable low-luminance screen. To reduce the screen luminance without decreasing the screen pixel value, the arrangement reduces only the high-luminance cell area while keeping the cell spacing. In this study, two technical issues related to high-luminance cell-size reduction arrangement are solved. First, a numerical analysis and experimental results show that the high-luminance cell-size reduction arrangement is more effective in reducing the spatial ISI at low luminance than the conventional low-luminance cell arrangement. Second, in view point of PLS enhancement at wide angles, symbol error rate should be low in front of the screen and high at wide angles. A numerical analysis and experimental results show that the high-luminance cell-size reduction arrangement is more suitable for enhancing PLS at wide angles than the conventional low-luminance cell arrangement.

  • New Bounds of No-Hit-Zone Frequency-Hopping Sequences with Frequency Shift

    Qianhui WEI  Hongyu HAN  Limengnan ZHOU  Hanzhou WU  

     
    LETTER

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    803-806

    In quasi-synchronous FH multiple-access (QS-FHMA) systems, no-hit-zone frequency-hopping sequences (NHZ-FHSs) can offer interference-free FHMA performance. But, outside the no-hit-zone (NHZ), the Hamming correlation of traditional NHZ-FHZs maybe so large that the performance becomes not good. And in high-speed mobile environment, Doppler shift phenomenon will appear. In order to ensure the performance of FHMA, it is necessary to study the NHZ-FHSs in the presence of transmission delay and frequency offset. In this paper, We derive a lower bound on the maximum time-frequency two-dimensional Hamming correlation outside of the NHZ of NHZ-FHSs. The Zeng-Zhou-Liu-Liu bound is a particular situation of the new bound for frequency shift is zero.

481-500hit(22683hit)