The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

461-480hit(22683hit)

  • Parameterized Formal Graph Systems and Their Polynomial-Time PAC Learnability

    Takayoshi SHOUDAI  Satoshi MATSUMOTO  Yusuke SUZUKI  Tomoyuki UCHIDA  Tetsuhiro MIYAHARA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/12/14
      Vol:
    E106-A No:6
      Page(s):
    896-906

    A formal graph system (FGS for short) is a logic program consisting of definite clauses whose arguments are graph patterns instead of first-order terms. The definite clauses are referred to as graph rewriting rules. An FGS is shown to be a useful unifying framework for learning graph languages. In this paper, we show the polynomial-time PAC learnability of a subclass of FGS languages defined by parameterized hereditary FGSs with bounded degree, from the viewpoint of computational learning theory. That is, we consider VH-FGSLk,Δ(m, s, t, r, w, d) as the class of FGS languages consisting of graphs of treewidth at most k and of maximum degree at most Δ which is defined by variable-hereditary FGSs consisting of m graph rewriting rules having TGP patterns as arguments. The parameters s, t, and r denote the maximum numbers of variables, atoms in the body, and arguments of each predicate symbol of each graph rewriting rule in an FGS, respectively. The parameters w and d denote the maximum number of vertices of each hyperedge and the maximum degree of each vertex of TGP patterns in each graph rewriting rule in an FGS, respectively. VH-FGSLk,Δ(m, s, t, r, w, d) has infinitely many languages even if all the parameters are bounded by constants. Then we prove that the class VH-FGSLk,Δ(m, s, t, r, w, d) is polynomial-time PAC learnable if all m, s, t, r, w, d, Δ are constants except for k.

  • Constructions of Low/Zero Correlation Zone Sequence Sets and Their Application in Grant-Free Non-Orthogonal Multiple Access System

    Tao LIU  Meiyue WANG  Dongyan JIA  Yubo LI  

     
    PAPER-Information Theory

      Pubricized:
    2022/12/16
      Vol:
    E106-A No:6
      Page(s):
    907-915

    In the massive machine-type communication scenario, aiming at the problems of active user detection and channel estimation in the grant-free non-orthogonal multiple access (NOMA) system, new sets of non-orthogonal spreading sequences are proposed by using the zero/low correlation zone sequence set with low correlation among multiple sets. The simulation results show that the resulting sequence set has low coherence, which presents reliable performance for channel estimation and active user detection based on compressed sensing. Compared with the traditional Zadoff-Chu (ZC) sequences, the new non-orthogonal spreading sequences have more flexible lengths, and lower peak-to-average power ratio (PAPR) and smaller alphabet size. Consequently, these sequences will effectively solve the problem of high PAPR of time domain signals and are more suitable for low-cost devices in massive machine-type communication.

  • Examination of Quantitative Evaluation Index of Contrast Improvement for Dichromats

    Xi CHENG  Go TANAKA  

     
    PAPER-Image

      Pubricized:
    2022/12/02
      Vol:
    E106-A No:6
      Page(s):
    916-923

    For dichromats to receive the information represented in color images, it is important to study contrast improvement methods and quantitative evaluation indices of color conversion results. There is an index to evaluate the degree of contrast improvement and in this index, the contrast for dichromacy caused by the lightness component is given importance. In addition, random sampling was introduced in the computation of this index. Although the validity of the index has been shown through comparison with a subjective evaluation, it is considered that the following two points should be examined. First, should contrast for normal trichromacy caused by the lightness component also be attached importance. Second, the influence of random sampling should be examined in detail. In this paper, a new index is proposed and the above-mentioned points are examined. For the first point, the following is revealed through experiment. Consideration of the contrast for normal trichromacy caused by a lightness component that is the same as that for dichromacy may or may not result in a good outcome. The evaluation performance of the proposed index is equivalent to that of the previous index overall. It can be said that the proposed index is superior to the previous one in terms of the unity of evaluating contrast. For the second point, the computation time and the evaluation of significant digits are shown. In this paper, a sampling number such that the number of significant digits can be considered as three is used. In this case, the variation caused by random sampling is negligible compared with the range of the proposed index, whereas the computation time is about one-seventh that when the sampling is not adopted.

  • A Novel Discriminative Dictionary Learning Method for Image Classification

    Wentao LYU  Di ZHOU  Chengqun WANG  Lu ZHANG  

     
    PAPER-Image

      Pubricized:
    2022/12/14
      Vol:
    E106-A No:6
      Page(s):
    932-937

    In this paper, we present a novel discriminative dictionary learning (DDL) method for image classification. The local structural relationship between samples is first built by the Laplacian eigenmaps (LE), and then integrated into the basic DDL frame to suppress inter-class ambiguity in the feature space. Moreover, in order to improve the discriminative ability of the dictionary, the category label information of training samples is formulated into the objective function of dictionary learning by considering the discriminative promotion term. Thus, the data points of original samples are transformed into a new feature space, in which the points from different categories are expected to be far apart. The test results based on the real dataset indicate the effectiveness of this method.

  • GazeFollowTR: A Method of Gaze Following with Reborn Mechanism

    Jingzhao DAI  Ming LI  Xuejiao HU  Yang LI  Sidan DU  

     
    PAPER-Vision

      Pubricized:
    2022/11/30
      Vol:
    E106-A No:6
      Page(s):
    938-946

    Gaze following is the task of estimating where an observer is looking inside a scene. Both the observer and scene information must be learned to determine the gaze directions and gaze points. Recently, many existing works have only focused on scenes or observers. In contrast, revealed frameworks for gaze following are limited. In this paper, a gaze following method using a hybrid transformer is proposed. Based on the conventional method (GazeFollow), we conduct three developments. First, a hybrid transformer is applied for learning head images and gaze positions. Second, the pinball loss function is utilized to control the gaze point error. Finally, a novel ReLU layer with the reborn mechanism (reborn ReLU) is conducted to replace traditional ReLU layers in different network stages. To test the performance of our developments, we train our developed framework with the DL Gaze dataset and evaluate the model on our collected set. Through our experimental results, it can be proven that our framework can achieve outperformance over our referred methods.

  • L0-Norm Based Adaptive Equalization with PMSER Criterion for Underwater Acoustic Communications

    Tian FANG  Feng LIU  Conggai LI  Fangjiong CHEN  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2022/12/06
      Vol:
    E106-A No:6
      Page(s):
    947-951

    Underwater acoustic channels (UWA) are usually sparse, which can be exploited for adaptive equalization to improve the system performance. For the shallow UWA channels, based on the proportional minimum symbol error rate (PMSER) criterion, the adaptive equalization framework requires the sparsity selection. Since the sparsity of the L0 norm is stronger than that of the L1, we choose it to achieve better convergence. However, because the L0 norm leads to NP-hard problems, it is difficult to find an efficient solution. In order to solve this problem, we choose the Gaussian function to approximate the L0 norm. Simulation results show that the proposed scheme obtains better performance than the L1 based counterpart.

  • Policy-Based Grooming, Route, Spectrum, and Operational Mode Planning in Dynamic Multilayer Networks

    Takafumi TANAKA  Hiroshi HASEGAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/11/30
      Vol:
    E106-B No:6
      Page(s):
    489-499

    In this paper, we propose a heuristic planning method to efficiently accommodate dynamic multilayer path (MLP) demand in multilayer networks consisting of a Time Division Multiplexing (TDM) layer and a Wavelength Division Multiplexing (WDM) layer; the goal is to achieve the flexible accommodation of increasing capacity and diversifying path demands. In addition to the grooming of links at the TDM layer and the route and frequency slots for the elastic optical path to be established, MLP requires the selection of an appropriate operational mode, consisting of a combination of modulation formats and symbol rates supported by digital coherent transceivers. Our proposed MLP planning method defines a planning policy for each of these parameters and embeds the values calculated by combining these policies in an auxiliary graph, which allows the planning parameters to be calculated for MLP demand requirements in a single step. Simulations reveal that the choice of operational mode significantly reduces the blocking probability and demonstrate that the edge weights in the auxiliary graph allow MLP planning with characteristics tailored to MLP demand and network requirements. Furthermore, we quantitatively evaluate the impact of each planning policy on the MLP planning results.

  • Analysis of Field Uniformity in a TEM Cell Based on Finite Difference Method and Measured Field Strength

    Yixing GU  Zhongyuan ZHOU  Yunfen CHANG  Mingjie SHENG  Qi ZHOU  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2022/12/12
      Vol:
    E106-B No:6
      Page(s):
    509-517

    This paper proposes a method in calculating the field distribution of the cross section in a transverse electromagnetic (TEM) cell based on the method of finite difference. Besides, E-field uniformity of the cross section is analyzed with the calculation results and the measured field strength. Analysis indicates that theoretical calculation via method proposed in this paper can guide the setup of E-field probes to some extent when it comes to the E-field uniformity analysis in a TEM cell.

  • High Speed ASIC Architectures for Aggregate Signature over BLS12-381

    Kaoru MASADA  Ryohei NAKAYAMA  Makoto IKEDA  

     
    BRIEF PAPER

      Pubricized:
    2022/11/29
      Vol:
    E106-C No:6
      Page(s):
    331-334

    BLS signature is an elliptic curve cryptography with an attractive feature that signatures can be aggregated and shortened. We have designed two ASIC architectures for hashing to the elliptic curve and pairing to minimize the latency. Also, the designs are optimized for BLS12-381, a relatively new and safe curve.

  • Protection of Latency-Strict Stations on WLAN Systems Using CTS-to-STA Frames

    Kenichi KAWAMURA  Shouta NAKAYAMA  Keisuke WAKAO  Takatsune MORIYAMA  Yasushi TAKATORI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/11/28
      Vol:
    E106-B No:6
      Page(s):
    518-527

    Low-latency and highly reliable communication on wireless LAN (WLAN) is difficult due to interference from the surroundings. To overcome this problem, we have developed a scheme called Clear to Send-to-Station (CTS-STA) frame transmission control that enables stable latency communication in environments with strong interference from surrounding WLAN systems. This scheme uses the basic functions of WLAN standards and is effective for both the latest and legacy standard devices. It operates when latency-strict transmission is required for an STA and there is interference from surrounding WLAN devices while minimizing the control signal overhead. Experimental evaluations with prototype systems demonstrate the effectiveness of the proposed scheme.

  • Unified 6G Waveform Design Based on DFT-s-OFDM Enhancements

    Juan LIU  Xiaolin HOU  Wenjia LIU  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/12/05
      Vol:
    E106-B No:6
      Page(s):
    528-537

    To achieve the extreme high data rate and extreme coverage extension requirements of 6G wireless communication, new spectrum in sub-THz (100-300GHz) and non-terrestrial network (NTN) are two of the macro trends of 6G candidate technologies, respectively. However, non-linearity of power amplifiers (PA) is a critical challenge for both sub-THz and NTN. Therefore, high power efficiency (PE) or low peak to average power ratio (PAPR) waveform design becomes one of the most significant 6G research topics. Meanwhile, high spectral efficiency (SE) and low out-of-band emission (OOBE) are still important key performance indicators (KPIs) for 6G waveform design. Single-carrier waveform discrete Fourier transform spreading orthogonal frequency division multiplexing (DFT-s-OFDM) has achieved many research interests due to its high PE, and it has been supported in 5G New Radio (NR) when uplink coverage is limited. So DFT-s-OFDM can be regarded as a candidate waveform for 6G. Many enhancement schemes based on DFT-s-OFDM have been proposed, including null cyclic prefix (NCP)/unique word (UW), frequency-domain spectral shaping (FDSS), and time-domain compression and expansion (TD-CE), etc. However, there is no unified framework to be compatible with all the enhancement schemes. This paper firstly provides a general description of the 6G candidate waveforms based on DFT-s-OFDM enhancement. Secondly, the more flexible TD-CE supporting methods for unified non-orthogonal waveform (uNOW) are proposed and discussed. Thirdly, a unified waveform framework based on DFT-s-OFDM structure is proposed. By designing the pre-processing and post-processing modules before and after DFT in the unified waveform framework, the three technical methods (NCP/UW, FDSS, and TD-CE) can be integrated to improve three KPIs of DFT-s-OFDM simultaneously with high flexibility. Then the implementation complexity of the 6G candidate waveforms are analyzed and compared. Performance of different DFT-s-OFDM enhancement schemes is investigated by link level simulation, which reveals that uNOW can achieve the best PAPR performance among all the 6G candidate waveforms. When considering PA back-off, uNOW can achieve 124% throughput gain compared to traditional DFT-s-OFDM.

  • Vapor Deposition of Fluoropolymer Thin Films for Antireflection Coating

    Soma YASUI  Fujio OHISHI  Hiroaki USUI  

     
    PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-C No:6
      Page(s):
    195-201

    Thin films of Teflon AF 1600 were prepared by an electron-assisted (e-assist) deposition method. IR analysis revealed that the e-assist deposition generates small amount of polar groups such as carboxylic acid in the molecular structure of the deposited films. The polar groups contributed to increase intermolecular interaction and led to remarkable improvement in the adhesion strength and robustness of the films especially when a bias voltage was applied to the substrate in the course of e-assist deposition. The vapor-deposited Teflon AF films had refractive indices of 1.35 to 1.38, and were effective for antireflection coatings. The use of e-assist deposition slightly increased the refractive index as a trade-off for the improvement of film robustness.

  • Activating Dipolar-Energy-Based Triboelectric Power Generation Using Pyromellitic Dianhydride-4,4'-Oxydianiline Polyimide at Elevated Temperature

    Dai TAGUCHI  Takaaki MANAKA  Mitsumasa IWAMOTO  

     
    PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-C No:6
      Page(s):
    202-207

    Triboelectric generators have been attracting much attention as electrical power sources in scientific communities and industries. Based on dielectric physics, two microscopic routes are available as current sources: One is charge displacement and the other is dipolar rotation. We have been investigating these routes as power sources for triboelectric generation. In other words, dipolar energy transfer process during a course of depolarization has the potentiality to be utilized as triboelectric generator. In this paper, we show that polyimide polymer film with permanent dipoles, i.e., PMDA-ODA polyimide, can provide current source capacity enhanced at elevated temperature, which is in good agreement with our idea based on dipolar energy mode of triboelectric generator. That is, permanent dipoles rotate quickly at elevated temperature, and act as an enhanced current source in the dipolar energy source model of triboelectric generator.

  • Effect of the State of Catalytic Nanoparticles on the Growth of Vertically Aligned Carbon Nanotubes

    Shohei SAKURAI  Mayu IIDA  Kosei OKUNUKI  Masahito KUSHIDA  

     
    PAPER

      Pubricized:
    2023/01/13
      Vol:
    E106-C No:6
      Page(s):
    208-213

    In this study, vertically aligned carbon nanotubes (VA-CNTs) were grown from filler-added LB films with accumulated AlFe2O4 nanoparticles and palmitic acid (C16) as the filler molecule after different hydrogen reduction temperatures of 500°C and 750°C, and the grown VA-CNTs were compared and evaluated. As a result, VA-CNTs were approximately doubled in length after 500°C hydrogen reduction compared to 750°C hydrogen reduction when AlFe2O4 NPs were used. On the other hand, when the catalyst area ratio was decreased by using palmitic acid, i.e., the distance between CNTs was increased, VA-CNTs rapidly shortened after 500°C hydrogen reduction, and VA-CNTs were no longer obtained even in the range where VA-CNTs were obtained in 750°C hydrogen reduction. The inner and outer diameters of VA-CNTs decreased with decreasing catalyst area ratio at 750°C hydrogen reduction and tended to increase at 500°C hydrogen reduction. The morphology of the catalyst nanoparticles after CVD was observed to change significantly depending on the hydrogen reduction temperature and catalyst area ratio. These observations indicate that the state of the catalyst nanoparticles immediately before the CNT growth process greatly affects the physical properties of the CNTs.

  • Photochemical Stability of Organic Electro-Optic Polymer at 1310-nm Wavelength Open Access

    Yukihiro TOMINARI  Toshiki YAMADA  Takahiro KAJI  Akira OTOMO  

     
    BRIEF PAPER

      Pubricized:
    2022/11/10
      Vol:
    E106-C No:6
      Page(s):
    228-231

    We investigated the photochemical stability of an electro-optic (EO) polymer under laser irradiation at 1310nm to reveal photodegradation mechanisms. It was found that one-photon absorption excitation assisted with the thermal energy at the temperature is involved in the photodegradation process, in contrast to our previous studies at a wavelength of 1550nm where two-photon absorption excitation is involved in the photodegradation process. Thus, both the excitation wavelength and the thermal energy strongly affect to the degradation mechanism. In any cases, the photodegradation of EO polymers is mainly related to the generation of exited singlet oxygen.

  • Toward Long and Strong Electroactive Supercoiled Polymer Artificial Muscles: Fabrication with Constant-Load Springs

    Kazuya TADA  

     
    BRIEF PAPER

      Pubricized:
    2022/12/14
      Vol:
    E106-C No:6
      Page(s):
    232-235

    An electroactive supercoiled polymer artificial muscle, which is made from a conductive sewing thread using self-coiling caused by inserting a twist with a hanged appropriate weight, is 1/4-1/3 of the thread in length. Therefore, it is necessary to move the weight vertically about two or three times as long as the desired electroactive supercoiled polymer artificial muscle, resulting in a large vertical dimension of the fabrication equipment. This study has attempted to solve this problem by using constant-load springs that enable horizontal table-top fabrication equipment. It has been also demonstrated that inserting a twist into the bundled threads results in a strong electroactive supercoiled polymer artificial muscle.

  • Time-Resolved Observation of Organic Light Emitting Diode under Reverse Bias Voltage by Extended Time Domain Reflectometry

    Weisong LIAO  Akira KAINO  Tomoaki MASHIKO  Sou KUROMASA  Masatoshi SAKAI  Kazuhiro KUDO  

     
    BRIEF PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-C No:6
      Page(s):
    236-239

    We observed dynamical carrier motion in an OLED device under an external reverse bias application using ExTDR measurement. The rectangular wave pulses were used in our ExTDR to observe the transient impedance of the OLED sample. The falling edge of the transmission waveform reflects the transient impedance after applying pulse voltage during the pulse width. The observed pulse width variation at the falling edge waveform indicates that the frontline of the hole distribution in the hole transport layer was forced to move backward to the ITO electrode.

  • Multilayered Inverted Polymer Light Emitting Diodes Fabricated by Transfer-Printing and Push-Coating Techniques

    Eiji ITOH  Taisuke SEKINO  Masato KATO  

     
    BRIEF PAPER

      Pubricized:
    2023/03/08
      Vol:
    E106-C No:6
      Page(s):
    240-243

    We have developed multilayered polymer-based inverted organic light emitting diodes (iOLED) using transfer-printing and push-coating techniques. We obtained the higher efficiency and lower operation voltage with push-coated blue light emitting polymer and hole transporting polymer than the devices with spin-coated film. The β-phase obtained for blue emitting layer is attributable to the improved performance of relatively efficient bule and white iOLEDs with an external quantum efficiency (EQE) of above 2%.

  • Lead Bromide-Based Layered Perovskite Quantum-Well Films Having Aromatic Chromophores in Organic Layer

    Masanao ERA  

     
    BRIEF PAPER

      Pubricized:
    2022/12/16
      Vol:
    E106-C No:6
      Page(s):
    244-247

    Lead bromide-based perovskite organic-inorganic quantum-well films incorporated polycyclic aromatic chromophores into the organic layer (in other words, hybrid quantum-wells combined lead bromide semiconductor and organic semiconductors) were prepared by use of the spin-coating technique from the DMF solution in which PbBr2 and alkyl ammonium bromides which were linked polycyclic aromatics, pyrene, phenanthrene, and anthracene. When the pyrene-linked methyl ammonium bromide, which has a relatively small molecular cross-section with regard to the inorganic semiconductor plane, was employed, a lead bromide-based perovskite structure was successfully formed in the spin-coated films. When the phenanthrene-linked and anthracene-linked ammonium bromides, whose chromophore have large molecular cross-sections, were employed, lead bromide-based perovskite structures were not formed. However, the introduction of longer alkyl chains into the aromatics-linked ammonium bromides made it possible to form the perovskite structure.

  • Microneedle of Biodegradable Polyacid Anhydride with a Capillary Open Groove for Reagent Transfer

    Satomitsu IMAI  Kazuki CHIDAISYO  Kosuke YASUDA  

     
    BRIEF PAPER

      Pubricized:
    2022/11/28
      Vol:
    E106-C No:6
      Page(s):
    248-252

    Incorporating a tool for administering medication, such as a syringe, is required in microneedles (MNs) for medical use. This renders it easier for non-medical personnel to administer medication. Because it is difficult to fabricate a hollow MN, we fabricated a capillary groove on an MN and its substrate to enable the administration of a higher dosage. MN grooving is difficult to accomplish via the conventional injection molding method used for polylactic acid. Therefore, biodegradable polyacid anhydride was selected as the material for the MN. Because polyacid anhydride is a low-viscosity liquid at room temperature, an MN can be grooved using a processing method similar to vacuum casting. This study investigated the performance of the capillary force of the MN and the optimum shape and size of the MN by a puncture test.

461-480hit(22683hit)