The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

541-560hit(22683hit)

  • Subjective Difficulty Estimation of Educational Comics Using Gaze Features

    Kenya SAKAMOTO  Shizuka SHIRAI  Noriko TAKEMURA  Jason ORLOSKY  Hiroyuki NAGATAKI  Mayumi UEDA  Yuki URANISHI  Haruo TAKEMURA  

     
    PAPER-Educational Technology

      Pubricized:
    2023/02/03
      Vol:
    E106-D No:5
      Page(s):
    1038-1048

    This study explores significant eye-gaze features that can be used to estimate subjective difficulty while reading educational comics. Educational comics have grown rapidly as a promising way to teach difficult topics using illustrations and texts. However, comics include a variety of information on one page, so automatically detecting learners' states such as subjective difficulty is difficult with approaches such as system log-based detection, which is common in the Learning Analytics field. In order to solve this problem, this study focused on 28 eye-gaze features, including the proposal of three new features called “Variance in Gaze Convergence,” “Movement between Panels,” and “Movement between Tiles” to estimate two degrees of subjective difficulty. We then ran an experiment in a simulated environment using Virtual Reality (VR) to accurately collect gaze information. We extracted features in two unit levels, page- and panel-units, and evaluated the accuracy with each pattern in user-dependent and user-independent settings, respectively. Our proposed features achieved an average F1 classification-score of 0.721 and 0.742 in user-dependent and user-independent models at panel unit levels, respectively, trained by a Support Vector Machine (SVM).

  • Learning Local Similarity with Spatial Interrelations on Content-Based Image Retrieval

    Longjiao ZHAO  Yu WANG  Jien KATO  Yoshiharu ISHIKAWA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2023/02/14
      Vol:
    E106-D No:5
      Page(s):
    1069-1080

    Convolutional Neural Networks (CNNs) have recently demonstrated outstanding performance in image retrieval tasks. Local convolutional features extracted by CNNs, in particular, show exceptional capability in discrimination. Recent research in this field has concentrated on pooling methods that incorporate local features into global features and assess the global similarity of two images. However, the pooling methods sacrifice the image's local region information and spatial relationships, which are precisely known as the keys to the robustness against occlusion and viewpoint changes. In this paper, instead of pooling methods, we propose an alternative method based on local similarity, determined by directly using local convolutional features. Specifically, we first define three forms of local similarity tensors (LSTs), which take into account information about local regions as well as spatial relationships between them. We then construct a similarity CNN model (SCNN) based on LSTs to assess the similarity between the query and gallery images. The ideal configuration of our method is sought through thorough experiments from three perspectives: local region size, local region content, and spatial relationships between local regions. The experimental results on a modified open dataset (where query images are limited to occluded ones) confirm that the proposed method outperforms the pooling methods because of robustness enhancement. Furthermore, testing on three public retrieval datasets shows that combining LSTs with conventional pooling methods achieves the best results.

  • Blockchain-Based Pension System Ensuring Security, Provenance and Efficiency

    Minhaz KAMAL  Chowdhury Mohammad ABDULLAH  Fairuz SHAIARA  Abu Raihan Mostofa KAMAL  Md Mehedi HASAN  Jik-Soo KIM  Md Azam HOSSAIN  

     
    LETTER-Office Information Systems, e-Business Modeling

      Pubricized:
    2023/02/21
      Vol:
    E106-D No:5
      Page(s):
    1085-1088

    The literature presents a digitized pension system based on a consortium blockchain, with the aim of overcoming existing pension system challenges such as multiparty collaboration, manual intervention, high turnaround time, cost transparency, auditability, etc. In addition, the adoption of hyperledger fabric and the introduction of smart contracts aim to transform multi-organizational workflow into a synchronized, automated, modular, and error-free procedure.

  • Modality-Fused Graph Network for Cross-Modal Retrieval

    Fei WU  Shuaishuai LI  Guangchuan PENG  Yongheng MA  Xiao-Yuan JING  

     
    LETTER-Pattern Recognition

      Pubricized:
    2023/02/09
      Vol:
    E106-D No:5
      Page(s):
    1094-1097

    Cross-modal hashing technology has attracted much attention for its favorable retrieval performance and low storage cost. However, for existing cross-modal hashing methods, the heterogeneity of data across modalities is still a challenge and how to fully explore and utilize the intra-modality features has not been well studied. In this paper, we propose a novel cross-modal hashing approach called Modality-fused Graph Network (MFGN). The network architecture consists of a text channel and an image channel that are used to learn modality-specific features, and a modality fusion channel that uses the graph network to learn the modality-shared representations to reduce the heterogeneity across modalities. In addition, an integration module is introduced for the image and text channels to fully explore intra-modality features. Experiments on two widely used datasets show that our approach achieves better results than the state-of-the-art cross-modal hashing methods.

  • Speech Emotion Recognition Using Multihead Attention in Both Time and Feature Dimensions

    Yue XIE  Ruiyu LIANG  Zhenlin LIANG  Xiaoyan ZHAO  Wenhao ZENG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2023/02/21
      Vol:
    E106-D No:5
      Page(s):
    1098-1101

    To enhance the emotion feature and improve the performance of speech emotion recognition, an attention mechanism is employed to recognize the important information in both time and feature dimensions. In the time dimension, multi-heads attention is modified with the last state of the long short-term memory (LSTM)'s output to match the time accumulation characteristic of LSTM. In the feature dimension, scaled dot-product attention is replaced with additive attention that refers to the method of the state update of LSTM to construct multi-heads attention. This means that a nonlinear change replaces the linear mapping in classical multi-heads attention. Experiments on IEMOCAP datasets demonstrate that the attention mechanism could enhance emotional information and improve the performance of speech emotion recognition.

  • Wider Depth Dynamic Range Using Occupancy Map Correction for Immersive Video Coding

    Sung-Gyun LIM  Dong-Ha KIM  Kwan-Jung OH  Gwangsoon LEE  Jun Young JEONG  Jae-Gon KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/02/10
      Vol:
    E106-D No:5
      Page(s):
    1102-1105

    The MPEG Immersive Video (MIV) standard for immersive video coding provides users with an immersive sense of 6 degrees of freedom (6DoF) of view position and orientation by efficiently compressing multiview video acquired from different positions in a limited 3D space. In the MIV reference software called Test Model for Immersive Video (TMIV), the number of pixels to be compressed and transmitted is reduced by removing inter-view redundancy. Therefore, the occupancy information that indicates whether each pixel is valid or invalid must also be transmitted to the decoder for viewport rendering. The occupancy information is embedded in a geometry atlas and transmitted to the decoder side. At this time, to prevent occupancy errors that may occur during the compression of the geometry atlas, a guard band is set in the depth dynamic range. Reducing this guard band can improve the rendering quality by allowing a wider dynamic range for depth representation. Therefore, in this paper, based on the analysis of occupancy error of the current TMIV, two methods of occupancy error correction which allow depth dynamic range extension in the case of computer-generated (CG) sequences are presented. The experimental results show that the proposed method gives an average 2.2% BD-rate bit saving for CG compared to the existing TMIV.

  • New Binary Sequences Derived from Euler Quotients Modulo pq and Their Generalizations

    Jiang MA  Jun ZHANG  Yanguo JIA  Xiumin SHEN  

     
    PAPER-Coding Theory

      Pubricized:
    2022/09/30
      Vol:
    E106-A No:4
      Page(s):
    657-664

    Pseudorandom sequences with large linear complexity can resist the linear attack. The trace representation plays an important role in analysis and design of pseudorandom sequences. In this letter, we present the construction of a family of new binary sequences derived from Euler quotients modulo pq, where pq is a product of two primes and p divides q-1. Firstly, the linear complexity of the sequences are investigated. It is proved that the sequences have larger linear complexity and can resist the attack of Berlekamp-Massey algorithm. Then, we give the trace representation of the proposed sequences by determining the corresponding defining pair. Moreover, we generalize the result to the Euler quotients modulo pmqn with m≤n. Results indicate that the generalized sequences still have high linear complexity. We also give the trace representation of the generalized sequences by determining the corresponding defining pair. The result will be helpful for the implementation and the pseudorandom properties analysis of the sequences.

  • A QR Decomposition Algorithm with Partial Greedy Permutation for Zero-Forcing Block Diagonalization

    Shigenori KINJO  Takayuki GAMOH  Masaaki YAMANAKA  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/10/18
      Vol:
    E106-A No:4
      Page(s):
    665-673

    A new zero-forcing block diagonalization (ZF-BD) scheme that enables both a more simplified ZF-BD and further increase in sum rate of MU-MIMO channels is proposed in this paper. The proposed scheme provides the improvement in BER performance for equivalent SU-MIMO channels. The proposed scheme consists of two components. First, a permuted channel matrix (PCM), which is given by moving the submatrix related to a target user to the bottom of a downlink MIMO channel matrix, is newly defined to obtain a precoding matrix for ZF-BD. Executing QR decomposition alone for a given PCM provides null space for the target user. Second, a partial MSQRD (PMSQRD) algorithm, which adopts MSQRD only for a target user to provide improvement in bit rate and BER performance for the user, is proposed. Some numerical simulations are performed, and the results show improvement in sum rate performance of the total system. In addition, appropriate bit allocation improves the bit error rate (BER) performance in each equivalent SU-MIMO channel. A successive interference cancellation is applied to achieve further improvement in BER performance of user terminals.

  • On the Construction of Variable Strength Orthogonal Arrays

    Qingjuan ZHANG  Shanqi PANG  Yuan LI  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2022/09/30
      Vol:
    E106-A No:4
      Page(s):
    683-688

    Variable strength orthogonal array, as a special form of variable strength covering array, plays an important role in computer software testing and cryptography. In this paper, we study the construction of variable strength orthogonal arrays with strength two containing strength greater than two by Galois field and construct some variable strength orthogonal arrays with strength l containing strength greater than l by Fan-construction.

  • Metropolitan Area Network Model Design Using Regional Railways Information for Beyond 5G Research Open Access

    Takuji TACHIBANA  Yusuke HIROTA  Keijiro SUZUKI  Takehiro TSURITANI  Hiroshi HASEGAWA  

     
    POSITION PAPER-Network

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    296-306

    To accelerate research on Beyond 5G (B5G) technologies in Japan, we propose an algorithm that designs mesh-type metropolitan area network (MAN) models based on a priori Japanese regional railway information, because ground-truth communication network information is unavailable. Instead, we use the information of regional railways, which is expected to express the necessary geometric structure of our metropolitan cities while remaining strongly correlated with their population densities and demographic variations. We provide an additional compression algorithm for use in reducing a small-scale network model from the original MAN model designed using the proposed algorithm. Two Tokyo MAN models are created, and we provide day and night variants for each while highlighting the number of passengers alighting/boarding at each station and the respective population densities. The validity of the proposed algorithm is verified through comparisons with the Japan Photonic Network model and another model designed using the communication network information, which is not ground-truth. Comparison results show that our proposed algorithm is effective for designing MAN models and that our result provides a valid Tokyo MAN model.

  • Multitarget 2-D DOA Estimation Using Wideband LFMCW Signal and Triangle Array Composed of Three Receiver Antennas

    Wentao ZHANG  Chen MIAO  Wen WU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    307-316

    Direction of arrival (DOA) estimation has been a primary focus of research for many years. Research on DOA estimation continues to be immensely popular in the fields of the internet of things, radar, and smart driving. In this paper, a simple new two-dimensional DOA framework is proposed in which a triangular array is used to receive wideband linear frequency modulated continuous wave signals. The mixed echo signals from various targets are separated into a series of single-tone signals. The unwrapping algorithm is applied to the phase difference function of the single-tone signals. By using the least-squares method to fit the unwrapped phase difference function, the DOA information of each target is obtained. Theoretical analysis and simulation demonstrate that the framework has the following advantages. Unlike traditional phase goniometry, the framework can resolve the trade-off between antenna spacing and goniometric accuracy. The number of detected targets is not limited by the number of antennas. Moreover, the framework can obtain highly accurate DOA estimation results.

  • Adaptive GW Relocation and Strategic Flow Rerouting for Heterogeneous Drone Swarms

    Taichi MIYA  Kohta OHSHIMA  Yoshiaki KITAGUCHI  Katsunori YAMAOKA  

     
    PAPER-Network

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    331-351

    A drone swarm is a robotic architecture having multiple drones cooperate to accomplish a mission. Nowadays, heterogeneous drone swarms, in which a small number of gateway drones (GWs) act as protocol translators to enable the mixing of multiple swarms that use independent wireless protocols, have attracted much attention from many researchers. Our previous work proposed Path Optimizer — a method to minimize the number of end-to-end path-hops in a remote video monitoring system using heterogeneous drone swarms by autonomously relocating GWs to create a shortcut in the network for each communication request. However, Path Optimizer has limitations in improving communication quality when more video sessions than the number of GWs are requested simultaneously. Path Coordinator, which we propose in this paper, achieves a uniform reduction in end-to-end hops and maximizes the allowable hop satisfaction rate regardless of the number of sessions by introducing the cooperative and synchronous relocation of all GWs. Path Coordinator consists of two phases: first, physical optimization is performed by geographically relocating all GWs (relocation phase), and then logical optimization is achieved by modifying the relaying GWs of each video flow (rerouting phase). Computer simulations reveal that Path Coordinator adapts to various environments and performs as well as we expected. Furthermore, its performance is comparable to the upper limits possible with brute-force search.

  • Post-Processing of Iterative Estimation and Cancellation Scheme for Clipping Noise in OFDM Systems

    Kee-Hoon KIM  Chanki KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/09/30
      Vol:
    E106-B No:4
      Page(s):
    352-358

    Clipping is an efficient and simple method that can reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, clipping causes in-band distortion referred to as clipping noise. To resolve this problem, a novel iterative estimation and cancellation (IEC) scheme for clipping noise is one of the most popular schemes because it can significantly improve the performance of clipped OFDM systems. However, IEC exploits detected symbols at the receiver to estimate the clipping noise in principle and the detected symbols are not the sufficient statistic in terms of estimation theory. In this paper, we propose the post-processing technique of IEC, which fully exploits given sufficient statistic at the receiver and thus further enhances the performance of a clipped OFDM system as verified by simulations.

  • A Beam Search Method with Adaptive Beam Width Control Based on Area Size for Initial Access

    Takuto ARAI  Daisei UCHIDA  Tatsuhiko IWAKUNI  Shuki WAI  Naoki KITA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    359-366

    High gain antennas with narrow-beamforming are required to compensate for the high propagation loss expected in high frequency bands such as the millimeter wave and sub-terahertz wave bands, which are promising for achieving extremely high speeds and capacity. However using narrow-beamforming for initial access (IA) beam search in all directions incurs an excessive overhead. Using wide-beamforming can reduce the overhead for IA but it also shrinks the coverage area due to the lower beamforming gain. Here, it is assumed that there are some situations in which the required coverage distance differs depending on the direction from the antenna. For example, the distance to an floor for a ceiling-mounted antenna varies depending on the direction, and the distance to the obstruction becomes the required coverage distance for an antenna installation design that assumes line-of-sight. In this paper, we propose a novel IA beam search scheme with adaptive beam width control based on the distance to shield obstacles in each direction. Simulations and experiments show that the proposed method reduces the overhead by 20%-50% without shrinking the coverage area in shield environments compared to exhaustive beam search with narrow-beamforming.

  • A Lightweight Automatic Modulation Recognition Algorithm Based on Deep Learning

    Dong YI  Di WU  Tao HU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/09/30
      Vol:
    E106-B No:4
      Page(s):
    367-373

    Automatic modulation recognition (AMR) plays a critical role in modern communication systems. Owing to the recent advancements of deep learning (DL) techniques, the application of DL has been widely studied in AMR, and a large number of DL-AMR algorithms with high recognition rates have been developed. Most DL-AMR algorithm models have high recognition accuracy but have numerous parameters and are huge, complex models, which make them hard to deploy on resource-constrained platforms, such as satellite platforms. Some lightweight and low-complexity DL-AMR algorithm models also struggle to meet the accuracy requirements. Based on this, this paper proposes a lightweight and high-recognition-rate DL-AMR algorithm model called Lightweight Densely Connected Convolutional Network (DenseNet) Long Short-Term Memory network (LDLSTM). The model cascade of DenseNet and LSTM can achieve the same recognition accuracy as other advanced DL-AMR algorithms, but the parameter volume is only 1/12 that of these algorithms. Thus, it is advantageous to deploy LDLSTM in resource-constrained systems.

  • High-Quality Secure Wireless Transmission Scheme Using Polar Codes and Radio-Wave Encrypted Modulation Open Access

    Keisuke ASANO  Mamoru OKUMURA  Takumi ABE  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    374-383

    In recent years, physical layer security (PLS), which is based on information theory and whose strength does not depend on the eavesdropper's computing capability, has attracted much attention. We have proposed a chaos modulation method as one PLS method that offers channel coding gain. One alternative is based on polar codes. They are robust error-correcting codes, have a nested structure in the encoder, and the application of this mechanism to PLS encryption (PLS-polar) has been actively studied. However, most conventional studies assume the application of conventional linear modulation such as BPSK, do not use encryption modulation, and the channel coding gain in the modulation is not achieved. In this paper, we propose a PLS-polar method that can realize high-quality transmission and encryption of a modulated signal by applying chaos modulation to a polar-coding system. Numerical results show that the proposed method improves the performance compared to the conventional PLS-polar method by 0.7dB at a block error rate of 10-5. In addition, we show that the proposed method is superior to conventional chaos modulation concatenated with low-density parity-check codes, indicating that the polar code is more suitable for chaos modulation. Finally, it is demonstrated that the proposed method is secure in terms of information theoretical and computational security.

  • An Interpretation Method on Amplitude Intensities for Response Waveforms of Backward Transient Scattered Field Components by a 2-D Coated Metal Cylinder

    Keiji GOTO  Toru KAWANO  

     
    PAPER

      Pubricized:
    2022/09/29
      Vol:
    E106-C No:4
      Page(s):
    118-126

    In this paper, we propose an interpretation method on amplitude intensities for response waveforms of backward transient scattered field components for both E- and H-polarizations by a 2-D coated metal cylinder. A time-domain (TD) asymptotic solution, which is referred to as a TD Fourier transform method (TD-FTM), is derived by applying the FTM to a backward transient scattered field expressed by an integral form. The TD-FTM is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series. We use the TD-FTM to derive amplitude intensity ratios (AIRs) between adjacent backward transient scattered field components. By comparing the numerical values of the AIRs with those of the influence factors that compose the AIRs, major factor(s) can be identified, thereby allowing detailed interpretation method on the amplitude intensities for the response waveforms of backward transient scattered field components. The accuracy and practicality of the TD-FTM are evaluated by comparing it with three reference solutions. The effectiveness of an interpretation method on the amplitude intensities for response waveforms of backward transient scattered field components is revealed by identifying major factor(s) affecting the amplitude intensities.

  • Band Characteristics of a Polarization Splitter with Circular Cores and Hollow Pits

    Midori NAGASAKA  Taiki ARAKAWA  Yutaro MOCHIDA  Kazunori KAMEDA  Shinichi FURUKAWA  

     
    PAPER

      Pubricized:
    2022/10/17
      Vol:
    E106-C No:4
      Page(s):
    127-135

    In this study, we discuss a structure that realizes a wideband polarization splitter comprising fiber 1 with a single core and fiber 2 with circular pits, which touch the top and bottom of a single core. The refractive index profile of the W type was adopted in the core of fiber 1 to realize the wideband. We compared the maximum bandwidth of BW-15 (bandwidth at an extinction ratio of -15dB) for the W type obtained in this study with those (our previous results) of BW-15 for the step and graded types with cores and pits at the same location; this comparison clarified that the maximum bandwidth of BW-15 for the W type is 5.22 and 4.96 times wider than those of step and graded types, respectively. Furthermore, the device length at the maximum bandwidth improved, becoming slightly shorter. The main results of the FPS in this study are all obtained by numerical analysis based on our proposed MM-DM (a method that combines the multipole method and the difference method for the inhomogeneous region). Our MM-DM is a quite reliable method for high accuracy analysis of the FPS composed of inhomogeneous circular regions.

  • Fundamental Study on Grasping Growth State of Paddy Rice Using Quad-Polarimetric SAR Data

    Tatsuya IKEUCHI  Ryoichi SATO  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  

     
    BRIEF PAPER

      Pubricized:
    2022/08/30
      Vol:
    E106-C No:4
      Page(s):
    144-148

    In this brief paper, we examine polarimetric scattering characteristics for understanding seasonal change of paddy rice growth by using quad-polarimetric synthetic aperture radar (SAR) data in the X-band. Here we carry out polarimetric scattering measurement for a simplified paddy rice model in an anechoic chamber at X-band frequency to acquire the the quad polarimetric SAR data from the model. The measurements are performed several times for each growth stage of the paddy rice corresponding to seasonal change. The model-based scattering power decomposition is used for the examination of polarimetric features of the paddy rice model. It is found from the result of the polarimetric SAR image analysis for the measurement data that the growth state of the paddy rice in each stage can be understood by considering the ratio of the decomposition powers, when the planting direction of the paddy rice is not only normal but also oblique to radar direction. We can also see that orientation angle compensation (OAC) is useful for improving the accuracy of the growth stage observation in late vegetative stage for oblique planting case.

  • A 28GHz High-Accuracy Phase and Amplitude Detection Circuit for Dual-Polarized Phased-Array Calibration Open Access

    Yudai YAMAZAKI  Joshua ALVIN  Jian PANG  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:4
      Page(s):
    149-156

    This article presents a 28GHz high-accuracy phase and amplitude detection circuit for dual-polarized phased-array calibration. With dual-polarized calibration scheme, external LO signal is not required for calibration. The proposed detection circuit detects phase and amplitude independently, using PDC and ADC. By utilizing a 28GHz-to-140kHz downconversion scheme, the phase and amplitude are detected more accurately. In addition, reference signal for PDC and ADC is generated from 28GHz LO signal with divide-by-6 dual-step-mixing injection locked frequency divider (ILFD). This ILFD achieves 24.5-32.5GHz (28%) locking range with only 3.0mW power consumption and 0.01mm2 area. In the measurement, the detection circuit achieves phase and amplitude detections with RMS errors of 0.17degree and 0.12dB, respectively. The total power consumption of the proposed circuit is 59mW with 1-V supply voltage.

541-560hit(22683hit)