The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

421-440hit(22683hit)

  • New Bounds on the Partial Hamming Correlation of Wide-Gap Frequency-Hopping Sequences with Frequency Shift

    Qianhui WEI  Zengqing LI  Hongyu HAN  Hanzhou WU  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/01/23
      Vol:
    E106-A No:8
      Page(s):
    1077-1080

    In frequency hopping communication, time delay and Doppler shift incur interference. With the escalating upgrading of complicated interference, in this paper, the time-frequency two-dimensional (TFTD) partial Hamming correlation (PHC) properties of wide-gap frequency-hopping sequences (WGFHSs) with frequency shift are discussed. A bound on the maximum TFTD partial Hamming auto-correlation (PHAC) and two bounds on the maximum TFTD PHC of WGFHSs are got. Li-Fan-Yang bounds are the particular cases of new bounds for frequency shift is zero.

  • Signal Detection for OTFS System Based on Improved Particle Swarm Optimization

    Jurong BAI  Lin LAN  Zhaoyang SONG  Huimin DU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/02/16
      Vol:
    E106-B No:8
      Page(s):
    614-621

    The orthogonal time frequency space (OTFS) technique proposed in recent years has excellent anti-Doppler frequency shift and time delay performance, enabling its application in high speed communication scenarios. In this article, a particle swarm optimization (PSO) signal detection algorithm for OTFS system is proposed, an adaptive mechanism for the individual learning factor and global learning factor in the speed formula of the algorithm is designed, and the position update method of the particles is improved, so as to increase the convergence accuracy and avoid the particles to fall into local optimum. The simulation results show that the improved PSO algorithm has the advantages of low bit error rate (BER) and high convergence accuracy compared with the traditional PSO algorithm, and has similar performance to the ideal state maximum likelihood (ML) detection algorithm with lower complexity. In the case of high Doppler shift, OTFS technology has better performance than orthogonal frequency division multiplexing (OFDM) technology by using improved PSO algorithm.

  • Development of a Simple and Lightweight Phantom for Evaluating Human Body Avoidance Technology in Microwave Wireless Power Transfer Open Access

    Kazuki SATO  Kazuyuki SAITO  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2023/02/15
      Vol:
    E106-B No:8
      Page(s):
    645-651

    In recent years, microwave wireless power transfer (WPT) has attracted considerable attention due to the increasing demand for various sensors and Internet of Things (IoT) applications. Microwave WPT requires technology that can detect and avoid human bodies in the transmission path. Using a phantom is essential for developing such technology in terms of standardization and human body protection from electromagnetic radiation. In this study, a simple and lightweight phantom was developed focusing on its radar cross-section (RCS) to evaluate human body avoidance technology for use in microwave WPT systems. The developed phantom's RCS is comparable to that of the human body.

  • Demonstration of Chaos-Based Radio Encryption Modulation Scheme through Wired Transmission Experiments Open Access

    Kenya TOMITA  Mamoru OKUMURA  Eiji OKAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/25
      Vol:
    E106-B No:8
      Page(s):
    686-695

    With the recent commercialization of fifth-generation mobile communication systems (5G), wireless communications are being used in various fields. Accordingly, the number of situations in which sensitive information, such as personal data is handled in wireless communications is increasing, and so is the demand for confidentiality. To meet this demand, we proposed a chaos-based radio-encryption modulation that combines physical layer confidentiality and channel coding effects, and we have demonstrated its effectiveness through computer simulations. However, there are no demonstrations of performances using real signals. In this study, we constructed a transmission system using Universal Software Radio Peripheral, a type of software-defined radio, and its control software LabVIEW. We conducted wired transmission experiments for the practical use of radio-frequency encrypted modulation. The results showed that a gain of 0.45dB at a bit error rate of 10-3 was obtained for binary phase-shift keying, which has the same transmission efficiency as the proposed method under an additive white Gaussian noise channel. Similarly, a gain of 10dB was obtained under fading conditions. We also evaluated the security ability and demonstrated that chaos modulation has both information-theoretic security and computational security.

  • Motion Parameter Estimation Based on Overlapping Elements for TDM-MIMO FMCW Radar

    Feng TIAN  Wan LIU  Weibo FU  Xiaojun HUANG  

     
    PAPER-Sensing

      Pubricized:
    2023/02/06
      Vol:
    E106-B No:8
      Page(s):
    705-713

    Intelligent traffic monitoring provides information support for autonomous driving, which is widely used in intelligent transportation systems (ITSs). A method for estimating vehicle moving target parameters based on millimeter-wave radars is proposed to solve the problem of low detection accuracy due to velocity ambiguity and Doppler-angle coupling in the process of traffic monitoring. First of all, a MIMO antenna array with overlapping elements is constructed by introducing them into the typical design of MIMO radar array antennas. The motion-induced phase errors are eliminated by the phase difference among the overlapping elements. Then, the position errors among them are corrected through an iterative method, and the angle of multiple targets is estimated. Finally, velocity disambiguation is performed by adopting the error-corrected phase difference among the overlapping elements. An accurate estimation of vehicle moving target angle and velocity is achieved. Through Monte Carlo simulation experiments, the angle error is 0.1° and the velocity error is 0.1m/s. The simulation results show that the method can be used to effectively solve the problems related to velocity ambiguity and Doppler-angle coupling, meanwhile the accuracy of velocity and angle estimation can be improved. An improved algorithm is tested on the vehicle datasets that are gathered in the forward direction of ordinary public scenes of a city. The experimental results further verify the feasibility of the method, which meets the real-time and accuracy requirements of ITSs on vehicle information monitoring.

  • Reliable and Efficient Chip-PCB Hybrid PUF and Lightweight Key Generator

    Yuanzhong XU  Tao KE  Wenjun CAO  Yao FU  Zhangqing HE  

     
    PAPER-Electronic Circuits

      Pubricized:
    2023/03/10
      Vol:
    E106-C No:8
      Page(s):
    432-441

    Physical Unclonable Function (PUF) is a promising lightweight hardware security primitive that can extract device fingerprints for encryption or authentication. However, extracting fingerprints from either the chip or the board individually has security flaws and cannot provide hardware system-level security. This paper proposes a new Chip-PCB hybrid PUF(CPR PUF) in which Weak PUF on PCB is combined with Strong PUF inside the chip to generate massive responses under the control of challenges of on-chip Strong PUF. This structure tightly couples the chip and PCB into an inseparable and unclonable unit thus can verify the authenticity of chip as well as the board. To improve the uniformity and reliability of Chip-PCB hybrid PUF, we propose a lightweight key generator based on a reliability self-test and debiasing algorithm to extract massive stable and secure keys from unreliable and biased PUF responses, which eliminates expensive error correction processes. The FPGA-based test results show that the PUF responses after robust extraction and debiasing achieve high uniqueness, reliability, uniformity and anti-counterfeiting features. Moreover, the key generator greatly reduces the execution cost and the bit error rate of the keys is less than 10-9, the overall security of the key is also improved by eliminating the entropy leakage of helper data.

  • Highly Integrated DBC-Based IPM with Ultra-Compact Size for Low Power Motor Drive Applications

    Huanyu WANG  Lina HUANG  Yutong LIU  Zhenyuan XU  Lu ZHANG  Tuming ZHANG  Yuxiang FENG  Qing HUA  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2023/02/20
      Vol:
    E106-C No:8
      Page(s):
    442-445

    This paper proposes the new series highly integrated intelligent power module (IPM), which is developed to provide a ultra-compact, high performance and reliable motor drive system. Details of the key design technologies of the IPM is given and practical application issues such as electrical characteristics, system operation performance and power dissipation are discussed. Layout placement and routing have been optimized in order to reduce and balance the parasitic impedances. By implementing an innovative direct bonding copper (DBC) ceramic substrate, which can effectively dissipate heat, the IPM delivers a fully integrated power stages including two three-phase inverters, power factor correction (PFC) and rectifier in an ultra-compact 75.5mm × 30mm package, offering up to a 17.3 percent smaller space than traditional motor drive scheme.

  • Information Recovery for Signals Intercepted by Dual-Channel Nyquist Folding Receiver with Adjustable Local Oscillator

    Xinqun LIU  Tao LI  Yingxiao ZHAO  Jinlin PENG  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2023/03/24
      Vol:
    E106-C No:8
      Page(s):
    446-449

    Conventional Nyquist folding receiver (NYFR) uses zero crossing rising (ZCR) voltage times to control the RF sample clock, which is easily affected by noise. Moreover, the analog and digital parts are not synchronized so that the initial phase of the input signal is lost. Furthermore, it is assumed in most literature that the input signal is in a single Nyquist zone (NZ), which is inconsistent with the actual situation. In this paper, we propose an improved architecture denominated as a dual-channel NYFR with adjustable local oscillator (LOS) and an information recovery algorithm. The simulation results demonstrate the validity and viability of the proposed architecture and the corresponding algorithm.

  • EMRNet: Efficient Modulation Recognition Networks for Continuous-Wave Radar Signals

    Kuiyu CHEN  Jingyi ZHANG  Shuning ZHANG  Si CHEN  Yue MA  

     
    BRIEF PAPER-Electronic Instrumentation and Control

      Pubricized:
    2023/03/24
      Vol:
    E106-C No:8
      Page(s):
    450-453

    Automatic modulation recognition(AMR) of radar signals is a currently active area, especially in electronic reconnaissance, where systems need to quickly identify the intercepted signal and formulate corresponding interference measures on computationally limited platforms. However, previous methods generally have high computational complexity and considerable network parameters, making the system unable to detect the signal timely in resource-constrained environments. This letter firstly proposes an efficient modulation recognition network(EMRNet) with tiny and low latency models to match the requirements for mobile reconnaissance equipments. One-dimensional residual depthwise separable convolutions block(1D-RDSB) with an adaptive size of receptive fields is developed in EMRNet to replace the traditional convolution block. With 1D-RDSB, EMRNet achieves a high classification accuracy and dramatically reduces computation cost and network paraments. The experiment results show that EMRNet can achieve higher precision than existing 2D-CNN methods, while the computational cost and parament amount of EMRNet are reduced by about 13.93× and 80.88×, respectively.

  • Multi-Target Recognition Utilizing Micro-Doppler Signatures with Limited Supervision

    Jingyi ZHANG  Kuiyu CHEN  Yue MA  

     
    BRIEF PAPER-Electronic Instrumentation and Control

      Pubricized:
    2023/03/06
      Vol:
    E106-C No:8
      Page(s):
    454-457

    Previously, convolutional neural networks have made tremendous progress in target recognition based on micro-Doppler radar. However, these studies only considered the presence of one target at a time in the surveillance area. Simultaneous multi-targets recognition for surveillance radar remains a pretty challenging issue. To alleviate this issue, this letter develops a multi-instance multi-label (MIML) learning strategy, which can automatically locate the crucial input patterns that trigger the labels. Benefitting from its powerful target-label relation discovery ability, the proposed framework can be trained with limited supervision. We emphasize that only echoes from single targets are involved in training data, avoiding the preparation and annotation of multi-targets echo in the training stage. To verify the validity of the proposed method, we model two representative ground moving targets, i.e., person and wheeled vehicles, and carry out numerous comparative experiments. The result demonstrates that the developed framework can simultaneously recognize multiple targets and is also robust to variation of the signal-to-noise ratio (SNR), the initial position of targets, and the difference in scattering coefficient.

  • Digital Rights Management System of Media Convergence Center Based on Ethereum and IPFS

    Runde YU  Zhuowen LI  Zhe CHEN  Gangyi DING  

     
    PAPER-Multimedia Pattern Processing

      Pubricized:
    2023/05/02
      Vol:
    E106-D No:8
      Page(s):
    1275-1282

    In order to solve the problems of copyrights infringement, high cost and complex process of rights protection in current media convergence center, a digital rights management system based on blockchain technology and IPFS (Inter Planetary File System) technology is proposed. Considering that large files such as video and audio cannot be stored on the blockchain directly, IPFS technology is adopted as the data expansion scheme for the data storage layer of the Ethereum platform, IPFS protocol is further used for distributed data storage and transmission of media content. In addition, smart contract is also used to uniquely identify digital rights through NFT (Non-fungible Tokens), which provides the characteristics of digital rights transferability and traceability, and realizes an open, transparent, tamper-proof and traceable digital rights management system for media convergence center. Several experimental results show that it has higher transaction success rate, lower storage consumption and transaction confirmation delay than existing scheme.

  • Distilling Distribution Knowledge in Normalizing Flow

    Jungwoo KWON  Gyeonghwan KIM  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/04/26
      Vol:
    E106-D No:8
      Page(s):
    1287-1291

    In this letter, we propose a feature-based knowledge distillation scheme which transfers knowledge between intermediate blocks of teacher and student with flow-based architecture, specifically Normalizing flow in our implementation. In addition to the knowledge transfer scheme, we examine how configuration of the distillation positions impacts on the knowledge transfer performance. To evaluate the proposed ideas, we choose two knowledge distillation baseline models which are based on Normalizing flow on different domains: CS-Flow for anomaly detection and SRFlow-DA for super-resolution. A set of performance comparison to the baseline models with popular benchmark datasets shows promising results along with improved inference speed. The comparison includes performance analysis based on various configurations of the distillation positions in the proposed scheme.

  • Temporal-Based Action Clustering for Motion Tendencies

    Xingyu QIAN  Xiaogang CHEN  Aximu YUEMAIER  Shunfen LI  Weibang DAI  Zhitang SONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/05/02
      Vol:
    E106-D No:8
      Page(s):
    1292-1295

    Video-based action recognition encompasses the recognition of appearance and the classification of action types. This work proposes a discrete-temporal-sequence-based motion tendency clustering framework to implement motion clustering by extracting motion tendencies and self-supervised learning. A published traffic intersection dataset (inD) and a self-produced gesture video set are used for evaluation and to validate the motion tendency action recognition hypothesis.

  • Quality Enhancement of Conventional Compression with a Learned Side Bitstream

    Takahiro NARUKO  Hiroaki AKUTSU  Koki TSUBOTA  Kiyoharu AIZAWA  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/04/25
      Vol:
    E106-D No:8
      Page(s):
    1296-1299

    We propose Quality Enhancement via a Side bitstream Network (QESN) technique for lossy image compression. The proposed QESN utilizes the network architecture of deep image compression to produce a bitstream for enhancing the quality of conventional compression. We also present a loss function that directly optimizes the Bjontegaard delta bit rate (BD-BR) by using a differentiable model of a rate-distortion curve. Experimental results show that QESN improves the rate by 16.7% in the BD-BR compared to Better Portable Graphics.

  • Promoting Students' Higher Order Thinking with Concept Map Recomposition

    Nurmaya  Aryo PINANDITO  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2023/05/23
      Vol:
    E106-D No:8
      Page(s):
    1262-1274

    Involving higher-order thinking in learning activities can produce meaningful learning. It impacts the student's ability to solve problems in new situations. Concept mapping is a learning strategy that has been proven to promote higher-order thinking. Concept map recomposition (KB-mapping) in the Kit-Build system is a closed concept mapping where learners are given concepts and links to build a concept map, and it has advantage that the recomposed map can be automatically diagnosed. It has been proven that KB-mapping improves the students' learning achievement similar to the traditional concept mapping called scratch concept map composition (SC-mapping). However, the study on the effect of KB-mapping in fostering students' higher-order thinking has yet to be evaluated. This study designed and conducted an experiment to compare the impact of KB-mapping and SC-mapping on promoting students' ability in higher-order thinking. Fifty-four undergraduate students were assigned to either KB-Mapping or SC-Mapping for learning activities. The result of this study suggested that students who learn with KB-mapping had better abilities to solve questions of higher-order thinking than those who applied SC-mapping. The findings also suggested that the quality of students' concept maps affected their performance in solving higher-order thinking questions.

  • Variable Ordering in Binary Decision Diagram Using Spider Monkey Optimization for Node and Path Length Optimization

    Mohammed BALAL SIDDIQUI  Mirza TARIQ BEG  Syed NASEEM AHMAD  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/01/16
      Vol:
    E106-A No:7
      Page(s):
    976-989

    Binary Decision Diagrams (BDDs) are an important data structure for the design of digital circuits using VLSI CAD tools. The ordering of variables affects the total number of nodes and path length in the BDDs. Finding a good variable ordering is an optimization problem and previously many optimization approaches have been implemented for BDDs in a number of research works. In this paper, an optimization approach based on Spider Monkey Optimization (SMO) algorithm is proposed for the BDD variable ordering problem targeting number of nodes and longest path length. SMO is a well-known swarm intelligence-based optimization approach based on spider monkeys foraging behavior. The proposed work has been compared with other latest BDD reordering approaches using Particle Swarm Optimization (PSO) algorithm. The results obtained show significant improvement over the Particle Swarm Optimization method. The proposed SMO-based method is applied to different benchmark digital circuits having different levels of complexities. The node count and longest path length for the maximum number of tested circuits are found to be better in SMO than PSO.

  • Simultaneous Visible Light Communication and Ranging Using High-Speed Stereo Cameras Based on Bicubic Interpolation Considering Multi-Level Pulse-Width Modulation

    Ruiyi HUANG  Masayuki KINOSHITA  Takaya YAMAZATO  Hiraku OKADA  Koji KAMAKURA  Shintaro ARAI  Tomohiro YENDO  Toshiaki FUJII  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/12/26
      Vol:
    E106-A No:7
      Page(s):
    990-997

    Visible light communication (VLC) and visible light ranging are applicable techniques for intelligent transportation systems (ITS). They use every unique light-emitting diode (LED) on roads for data transmission and range estimation. The simultaneous VLC and ranging can be applied to improve the performance of both. It is necessary to achieve rapid data rate and high-accuracy ranging when transmitting VLC data and estimating the range simultaneously. We use the signal modulation method of pulse-width modulation (PWM) to increase the data rate. However, when using PWM for VLC data transmission, images of the LED transmitters are captured at different luminance levels and are easily saturated, and LED saturation leads to inaccurate range estimation. In this paper, we establish a novel simultaneous visible light communication and ranging system for ITS using PWM. Here, we analyze the LED saturation problems and apply bicubic interpolation to solve the LED saturation problem and thus, improve the communication and ranging performance. Simultaneous communication and ranging are enabled using a stereo camera. Communication is realized using maximal-ratio combining (MRC) while ranging is achieved using phase-only correlation (POC) and sinc function approximation. Furthermore, we measured the performance of our proposed system using a field trial experiment. The results show that error-free performance can be achieved up to a communication distance of 55 m and the range estimation errors are below 0.5m within 60m.

  • Persymmetric Structured Covariance Matrix Estimation Based on Whitening for Airborne STAP

    Quanxin MA  Xiaolin DU  Jianbo LI  Yang JING  Yuqing CHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/12/27
      Vol:
    E106-A No:7
      Page(s):
    1002-1006

    The estimation problem of structured clutter covariance matrix (CCM) in space-time adaptive processing (STAP) for airborne radar systems is studied in this letter. By employing the prior knowledge and the persymmetric covariance structure, a new estimation algorithm is proposed based on the whitening ability of the covariance matrix. The proposed algorithm is robust to prior knowledge of different accuracy, and can whiten the observed interference data to obtain the optimal solution. In addition, the extended factored approach (EFA) is used in the optimization for dimensionality reduction, which reduces the computational burden. Simulation results show that the proposed algorithm can effectively improve STAP performance even under the condition of some errors in prior knowledge.

  • A Note on the Transformation Behaviors between Truth Tables and Algebraic Normal Forms of Boolean Functions

    Jianchao ZHANG  Deng TANG  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2023/01/18
      Vol:
    E106-A No:7
      Page(s):
    1007-1010

    Let f be a Boolean function in n variables. The Möbius transform and its converse of f can describe the transformation behaviors between the truth table of f and the coefficients of the monomials in the algebraic normal form representation of f. In this letter, we develop the Möbius transform and its converse into a more generalized form, which also includes the known result given by Reed in 1954. We hope that our new result can be used in the design of decoding schemes for linear codes and the cryptanalysis for symmetric cryptography. We also apply our new result to verify the basic idea of the cube attack in a very simple way, in which the cube attack is a powerful technique on the cryptanalysis for symmetric cryptography.

  • Exploiting RIS-Aided Cooperative Non-Orthogonal Multiple Access with Full-Duplex Relaying

    Guoqing DONG  Zhen YANG  Youhong FENG  Bin LYU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2023/01/06
      Vol:
    E106-A No:7
      Page(s):
    1011-1015

    In this paper, a novel reconfigurable intelligent surface (RIS)-aided full-duplex (FD) cooperative non-orthogonal multiple access (CNOMA) network is investigated over Nakagami-m fading channels, where two RISs are employed to help the communication of paired users. To evaluate the potential benefits of our proposed scheme, we first derive the closed-form expressions of the outage probability. Then, we derive users' diversity orders according to the asymptotic approximation at high signal-to-noise-ratio (SNR). Simulation results validate our analysis and reveal that users' diversity orders are affected by their channel fading parameters, the self-interference of FD, and the number of RIS elements.

421-440hit(22683hit)