Pierre LEBRETON Kazuhisa YAMAGISHI
Adaptive bitrate (ABR) video streaming is an important application on the Internet. To ensure that users enjoy high-quality services, ABR control mechanisms need to be designed that select chunks wisely on the basis of the available network throughput. To address the chunk selection problem, this paper describes an adaptive bitrate control mechanism that leverages long-term throughput information in the chunk selection process. While previous work has considered how quality should be requested on a per-chunk basis, the proposed method increases the timeframe of the analysis and allows higher quality of experience (QoE) to be reached. This is done by appropriately selecting a sequence of consecutive chunks’ quality values instead of a single chunk’s value. Simulation results are reported on a large variety of real-world network conditions and various throughput prediction algorithms and show the benefit of the proposed method over conventional ABR control mechanisms.
Ming YUE Yuyang PENG Liping XIONG Chaorong ZHANG Fawaz AL-HAZEMI Mohammad Meraj MIRZA
In this paper, we propose a novel communication scheme that combines reconfigurable intelligent surface with transmitted adaptive space shift keying (RIS-TASSK), where the number of active antennas is not fixed. In each time slot, the desired candidate antenna or antenna combination will be selected from all available antenna combinations for conveying information bits. Besides, an antenna selection method based on channel gains is proposed for RIS-TASSK to improve the bit error rate (BER) performance and decrease the complexity, respectively. By comparing with the RIS-aided transmitted space shift keying and RIS-aided transmitted generalized space shift keying schemes, the simulation and theoretical results show that the proposed scheme has better BER performance and appropriate complexity.
Yoichi HINAMOTO Shotaro NISHIMURA
A state-space approach for adaptive second-order IIR notch digital filters is explored. A simplified iterative algorithm is derived from the gradient-descent method to minimize the mean-squared output of an adaptive notch digital filter. The stability and parameter-estimation bias are then analyzed by employing a first-order linear dynamical system. As a consequence, it is clarified that the resulting parameter estimate is unbiased. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the adaptive state-space notch digital filter and bias analysis of parameter estimation.
This study explores adaptive output feedback leader-following in networks of linear systems utilizing switching logic. A local state observer is employed to estimate the true state of each agent within the network. The proposed protocol is based on the estimated states obtained from neighboring agents and employs a switching logic to tune its adaptive gain by utilizing only local neighboring information. The proposed leader-following protocol is fully distributed because it has a distributed adaptive gain and relies on only local information from its neighbors. Consequently, compared to conventional adaptive protocols, the proposed design method provides the advantages of a very simple adaptive law and dynamics with a low dimension.
Hakan BERCAG Osman KUKRER Aykut HOCANIN
A new extended normalized least-mean-square (ENLMS) algorithm is proposed. A novel non-linear time-varying step-size (NLTVSS) formula is derived. The convergence rate of ENLMS increases due to NLTVSS as the number of data-reuse L is increased. ENLMS does not involve matrix inversion, and, thus, avoids numerical instability issues.
Mengmeng ZHANG Zeliang ZHANG Yuan LI Ran CHENG Hongyuan JING Zhi LIU
Point cloud video contains not only color information but also spatial position information and usually has large volume of data. Typical rate distortion optimization algorithms based on Human Visual System only consider the color information, which limit the coding performance. In this paper, a Coding Tree Unit (CTU) level quantization parameter (QP) adjustment algorithm based on JND and spatial complexity is proposed to improve the subjective and objective quality of Video-Based Point Cloud Compression (V-PCC). Firstly, it is found that the JND model is degraded at CTU level for attribute video due to the pixel filling strategy of V-PCC, and an improved JND model is designed using the occupancy map. Secondly, a spatial complexity detection metric is designed to measure the visual importance of each CTU. Finally, a CTU-level QP adjustment scheme based on both JND levels and visual importance is proposed for geometry and attribute video. The experimental results show that, compared with the latest V-PCC (TMC2-18.0) anchors, the BD-rate is reduced by -2.8% and -3.2% for D1 and D2 metrics, respectively, and the subjective quality is improved significantly.
Kyoichi ASANO Keita EMURA Atsushi TAKAYASU
Identity-based encryption with equality test (IBEET) is a variant of identity-based encryption (IBE), in which any user with trapdoors can check whether two ciphertexts are encryption of the same plaintext. Although several lattice-based IBEET schemes have been proposed, they have drawbacks in either security or efficiency. Specifically, most IBEET schemes only satisfy selective security, while public keys of adaptively secure schemes in the standard model consist of matrices whose numbers are linear in the security parameter. In other words, known lattice-based IBEET schemes perform poorly compared to the state-of-the-art lattice-based IBE schemes (without equality test). In this paper, we propose a semi-generic construction of CCA-secure lattice-based IBEET from a certain class of lattice-based IBE schemes. As a result, we obtain the first lattice-based IBEET schemes with adaptive security and CCA security in the standard model without sacrificing efficiency. This is because, our semi-generic construction can use several state-of-the-art lattice-based IBE schemes as underlying schemes, e.g. Yamada's IBE scheme (CRYPTO'17).
Mingyu LI Jihang YIN Yonggang XU Gang HUA Nian XU
Aiming at the problem of “energy hole” caused by random distribution of nodes in large-scale wireless sensor networks (WSNs), this paper proposes an adaptive energy-efficient balanced uneven clustering routing protocol (AEBUC) for WSNs. The competition radius is adaptively adjusted based on the node density and the distance from candidate cluster head (CH) to base station (BS) to achieve scale-controlled adaptive optimal clustering; in candidate CHs, the energy relative density and candidate CH relative density are comprehensively considered to achieve dynamic CH selection. In the inter-cluster communication, based on the principle of energy balance, the relay communication cost function is established and combined with the minimum spanning tree method to realize the optimized inter-cluster multi-hop routing, forming an efficient communication routing tree. The experimental results show that the protocol effectively saves network energy, significantly extends network lifetime, and better solves the “energy hole” problem.
Gang LIU Xin CHEN Zhixiang GAO
Photo animation is to transform photos of real-world scenes into anime style images, which is a challenging task in AIGC (AI Generated Content). Although previous methods have achieved promising results, they often introduce noticeable artifacts or distortions. In this paper, we propose a novel double-tail generative adversarial network (DTGAN) for fast photo animation. DTGAN is the third version of the AnimeGAN series. Therefore, DTGAN is also called AnimeGANv3. The generator of DTGAN has two output tails, a support tail for outputting coarse-grained anime style images and a main tail for refining coarse-grained anime style images. In DTGAN, we propose a novel learnable normalization technique, termed as linearly adaptive denormalization (LADE), to prevent artifacts in the generated images. In order to improve the visual quality of the generated anime style images, two novel loss functions suitable for photo animation are proposed: 1) the region smoothing loss function, which is used to weaken the texture details of the generated images to achieve anime effects with abstract details; 2) the fine-grained revision loss function, which is used to eliminate artifacts and noise in the generated anime style image while preserving clear edges. Furthermore, the generator of DTGAN is a lightweight generator framework with only 1.02 million parameters in the inference phase. The proposed DTGAN can be easily end-to-end trained with unpaired training data. Extensive experiments have been conducted to qualitatively and quantitatively demonstrate that our method can produce high-quality anime style images from real-world photos and perform better than the state-of-the-art models.
The Volterra filter is one of the digital filters that can describe nonlinearity. In this paper, we analyze the dynamic behaviors of an adaptive signal processing system with the Volterra filter for nonwhite input signals by a statistical-mechanical method. Assuming the self-averaging property with an infinitely long tapped-delay line, we derive simultaneous differential equations that describe the behaviors of macroscopic variables in a deterministic and closed form. We analytically solve the derived equations to reveal the effect of the nonwhiteness of the input signal on the adaptation process. The results for the second-order Volterra filter show that the nonwhiteness decreases the mean-square error (MSE) in the early stages of the adaptation process and increases the MSE in the later stages.
Arif DATAESATU Kosuke SANADA Hiroyuki HATANO Kazuo MORI Pisit BOONSRIMUANG
The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.
In this letter, we study the adaptive regulation problem for a chain of integrators in which there are different individual delays in measured feedback states for a controller. These delays are considered to be unknown and time-varying, and they can be arbitrarily fast-varying. We analytically show that a feedback controller with a dynamic gain can adaptively regulate a chain of integrators in the presence of unknown individual state delays. A simulation result is given for illustration.
Peiqi ZHANG Shinya TAKAMAEDA-YAMAZAKI
Binary Neural Networks (BNN) have binarized neuron and connection values so that their accelerators can be realized by extremely efficient hardware. However, there is a significant accuracy gap between BNNs and networks with wider bit-width. Conventional BNNs binarize feature maps by static globally-unified thresholds, which makes the produced bipolar image lose local details. This paper proposes a multi-input activation function to enable adaptive thresholding for binarizing feature maps: (a) At the algorithm level, instead of operating each input pixel independently, adaptive thresholding dynamically changes the threshold according to surrounding pixels of the target pixel. When optimizing weights, adaptive thresholding is equivalent to an accompanied depth-wise convolution between normal convolution and binarization. Accompanied weights in the depth-wise filters are ternarized and optimized end-to-end. (b) At the hardware level, adaptive thresholding is realized through a multi-input activation function, which is compatible with common accelerator architectures. Compact activation hardware with only one extra accumulator is devised. By equipping the proposed method on FPGA, 4.1% accuracy improvement is achieved on the original BNN with only 1.1% extra LUT resource. Compared with State-of-the-art methods, the proposed idea further increases network accuracy by 0.8% on the Cifar-10 dataset and 0.4% on the ImageNet dataset.
The Common Media Application Format (CMAF) is a standard for adaptive bitrate live streaming. The CMAF adapts chunk encoding and enables low-latency live streaming. However, conventional bandwidth estimation for adaptive bitrate streaming underestimates bandwidth because download time is affected not only by network bandwidth but also by the idle times between chunks in the same segment. Inaccurate bandwidth estimation decreases the quality of experience of the streaming client. In this paper, we propose a chunk-grouping method to estimate the available bandwidth for adaptive bitrate live streaming. In the proposed method, by delaying HTTP request transmission and bandwidth estimation using grouped chunks, the client estimates the available bandwidth accurately due to there being no idle times in the grouped chunks. In addition, we extend the proposed method to dynamically change the number of grouping chunks according to buffer length during downloading of the previous segment. We evaluate the proposed methods under various network conditions in order to confirm the effectiveness of the proposed methods.
Satoshi DENNO Taichi YAMAGAMI Yafei HOU
This paper proposes low complexity resource allocation in frequency domain non-orthogonal multiple access where many devices access with a base station. The number of the devices is assumed to be more than that of the resource for network capacity enhancement, which is demanded in massive machine type communications (mMTC). This paper proposes two types of resource allocation techniques, all of which are based on the MIN-MAX approach. One of them seeks for nicer resource allocation with only channel gains. The other technique applies the message passing algorithm (MPA) for better resource allocation. The proposed resource allocation techniques are evaluated by computer simulation in frequency domain non-orthogonal multiple access. The proposed technique with the MPA achieves the best bit error rate (BER) performance in the proposed techniques. However, the computational complexity of the proposed techniques with channel gains is much smaller than that of the proposed technique with the MPA, whereas the BER performance of the proposed techniques with channel gains is only about 0.1dB inferior to that with the MPA in the multiple access with the overloading ratio of 1.5 at the BER of 10-4. They attain the gain of about 10dB at the BER of 10-4 in the multiple access with the overloading ration of 2.0. Their complexity is 10-16 as small as the conventional technique.
The existing target-dependent scalable image compression network can control the target of the compressed images between the human visual system and the deep learning based classification task. However, in its RNN based structure controls the bit-rate through the number of iterations, where each iteration generates a fixed size of the bit stream. Therefore, a large number of iterations are required at the high BPP, and fine-grained image quality control is not supported at the low BPP. In this paper, we propose a novel RNN-based image compression model that can schedule the channel size per iteration, to reduce the number of iterations at the high BPP and fine-grained bit-rate control at the low BPP. To further enhance the efficiency, multiple network models for various channel sizes are combined into a single model using the slimmable network architecture. The experimental results show that the proposed method achieves comparable performance to the existing method with finer BPP adjustment, increases parameters by only 0.15% and reduces the average amount of computation by 40.4%.
Kuiyu CHEN Jingyi ZHANG Shuning ZHANG Si CHEN Yue MA
Automatic modulation recognition(AMR) of radar signals is a currently active area, especially in electronic reconnaissance, where systems need to quickly identify the intercepted signal and formulate corresponding interference measures on computationally limited platforms. However, previous methods generally have high computational complexity and considerable network parameters, making the system unable to detect the signal timely in resource-constrained environments. This letter firstly proposes an efficient modulation recognition network(EMRNet) with tiny and low latency models to match the requirements for mobile reconnaissance equipments. One-dimensional residual depthwise separable convolutions block(1D-RDSB) with an adaptive size of receptive fields is developed in EMRNet to replace the traditional convolution block. With 1D-RDSB, EMRNet achieves a high classification accuracy and dramatically reduces computation cost and network paraments. The experiment results show that EMRNet can achieve higher precision than existing 2D-CNN methods, while the computational cost and parament amount of EMRNet are reduced by about 13.93× and 80.88×, respectively.
Tsuyoshi SUGIURA Toshihiko YOSHIMASU
This paper presents a Ka-band high-efficiency power amplifier (PA) with a novel adaptively controlled gate capacitor circuit and a two-step adaptive bias circuit for 5th generation (5G) mobile terminal applications fabricated using a 45-nm silicon on insulator (SOI) CMOS process. The PA adopts a stacked FET structure to increase the output power because of the low breakdown voltage issue of scaled MOSFETs. The novel adaptive gate capacitor circuit properly controls the RF swing for each stacked FET to achieve high efficiency in the several-dB back-off region. Further, the novel two-step adaptive bias circuit effectively controls the gate voltage for each stacked FET for high linearity and high back-off efficiency. At a supply voltage of 4 V, the fabricated PA has exhibited a saturated output power of 20.0 dBm, a peak power added efficiency (PAE) of 42.7%, a 3dB back-off efficiency of 32.7%, a 6dB back-off efficiency of 22.7%, and a gain of 15.6 dB. The effective PA area was 0.82 mm by 0.74 mm.
Tian FANG Feng LIU Conggai LI Fangjiong CHEN Yanli XU
Underwater acoustic channels (UWA) are usually sparse, which can be exploited for adaptive equalization to improve the system performance. For the shallow UWA channels, based on the proportional minimum symbol error rate (PMSER) criterion, the adaptive equalization framework requires the sparsity selection. Since the sparsity of the L0 norm is stronger than that of the L1, we choose it to achieve better convergence. However, because the L0 norm leads to NP-hard problems, it is difficult to find an efficient solution. In order to solve this problem, we choose the Gaussian function to approximate the L0 norm. Simulation results show that the proposed scheme obtains better performance than the L1 based counterpart.
Takafumi TANAKA Hiroshi HASEGAWA
In this paper, we propose a heuristic planning method to efficiently accommodate dynamic multilayer path (MLP) demand in multilayer networks consisting of a Time Division Multiplexing (TDM) layer and a Wavelength Division Multiplexing (WDM) layer; the goal is to achieve the flexible accommodation of increasing capacity and diversifying path demands. In addition to the grooming of links at the TDM layer and the route and frequency slots for the elastic optical path to be established, MLP requires the selection of an appropriate operational mode, consisting of a combination of modulation formats and symbol rates supported by digital coherent transceivers. Our proposed MLP planning method defines a planning policy for each of these parameters and embeds the values calculated by combining these policies in an auxiliary graph, which allows the planning parameters to be calculated for MLP demand requirements in a single step. Simulations reveal that the choice of operational mode significantly reduces the blocking probability and demonstrate that the edge weights in the auxiliary graph allow MLP planning with characteristics tailored to MLP demand and network requirements. Furthermore, we quantitatively evaluate the impact of each planning policy on the MLP planning results.