Nabilah SHABRINA Dongju LI Tsuyoshi ISSHIKI
The fingerprint verification system is widely used in mobile devices because of fingerprint's distinctive features and ease of capture. Typically, mobile devices utilize small sensors, which have limited area, to capture fingerprint. Meanwhile, conventional fingerprint feature extraction methods need detailed fingerprint information, which is unsuitable for those small sensors. This paper proposes a novel fingerprint verification method for small area sensors based on deep learning. A systematic method combines deep convolutional neural network (DCNN) in a Siamese network for feature extraction and XGBoost for fingerprint similarity training. In addition, a padding technique also introduced to avoid wraparound error problem. Experimental results show that the method achieves an improved accuracy of 66.6% and 22.6% in the FingerPassDB7 and FVC2006DB1B dataset, respectively, compared to the existing methods.
Tekkan OKUDA Hiraku OKADA Chedlia BEN NAILA Masaaki KATAYAMA
In this study, aiming at clarifying the characteristics of air-to-ground radio wave propagation in mountainous areas, a transmission experiment was performed between a drone equipped with a transmitter and three receivers set up on the ground using a 920MHz band wireless system at Uchigatani forest, which is located in Yamato-cho, Gujo-shi, Gifu Prefecture. In the experiment, we simultaneously measured the received signal strength indicator (RSSI) and the drone's latitude, longitude, and height from the ground. Then, we verified whether the measured data has the line-of-sight between the transmitter and receivers using a geographic information system and analyzed characteristics of the RSSI, packet loss rate, and fading concerning the height from the ground and distance between the transmitter and receivers. The results showed that increasing the drone's altitude to 90m or more makes the link more stable and that the fading distribution in mountainous terrains is different from in other terrains.
Tadayoshi ENOMOTO Nobuaki KOBAYASHI
We developed a self-controllable voltage level (SVL) circuit and applied this circuit to a single-power-supply, six-transistor complementary metal-oxide-semiconductor static random-access memory (SRAM) to not only improve both write and read performances but also to achieve low standby power and data retention (holding) capability. The SVL circuit comprises only three MOSFETs (i.e., pull-up, pull-down and bypass MOSFETs). The SVL circuit is able to adaptively generate both optimal memory cell voltages and word line voltages depending on which mode of operation (i.e., write, read or hold operation) was used. The write margin (VWM) and read margin (VRM) of the developed (dvlp) SRAM at a supply voltage (VDD) of 1V were 0.470 and 0.1923V, respectively. These values were 1.309 and 2.093 times VWM and VRM of the conventional (conv) SRAM, respectively. At a large threshold voltage (Vt) variability (=+6σ), the minimum power supply voltage (VMin) for the write operation of the conv SRAM was 0.37V, whereas it decreased to 0.22V for the dvlp SRAM. VMin for the read operation of the conv SRAM was 1.05V when the Vt variability (=-6σ) was large, but the dvlp SRAM lowered it to 0.41V. These results show that the SVL circuit expands the operating voltage range for both write and read operations to lower voltages. The dvlp SRAM reduces the standby power consumption (PST) while retaining data. The measured PST of the 2k-bit, 90-nm dvlp SRAM was only 0.957µW at VDD=1.0V, which was 9.46% of PST of the conv SRAM (10.12µW). The Si area overhead of the SVL circuits was only 1.383% of the dvlp SRAM.
Takuji TACHIBANA Yusuke HIROTA Keijiro SUZUKI Takehiro TSURITANI Hiroshi HASEGAWA
To accelerate research on Beyond 5G (B5G) technologies in Japan, we propose an algorithm that designs mesh-type metropolitan area network (MAN) models based on a priori Japanese regional railway information, because ground-truth communication network information is unavailable. Instead, we use the information of regional railways, which is expected to express the necessary geometric structure of our metropolitan cities while remaining strongly correlated with their population densities and demographic variations. We provide an additional compression algorithm for use in reducing a small-scale network model from the original MAN model designed using the proposed algorithm. Two Tokyo MAN models are created, and we provide day and night variants for each while highlighting the number of passengers alighting/boarding at each station and the respective population densities. The validity of the proposed algorithm is verified through comparisons with the Japan Photonic Network model and another model designed using the communication network information, which is not ground-truth. Comparison results show that our proposed algorithm is effective for designing MAN models and that our result provides a valid Tokyo MAN model.
Yuncheng ZHANG Bangan LIU Teruki SOMEYA Rui WU Junjun QIU Atsushi SHIRANE Kenichi OKADA
This paper presents a fully integrated yet compact receiver front-end for Sub-GHz applications such as Internet-of-Things (IoT). The low noise amplifier (LNA) matching network leverages an inductance boosting technique. A relatively small on-chip inductor with a compact area achieves impedance matching in such a low frequency. Moreover, a passive-mixer-first mode bypasses the LNA to extend the receiver dynamic-range. The passive mixer provides matching to the 50Ω antenna interface to eliminate the need for additional passive components. Therefore, the receiver can be fully-integrated without any off-chip matching components. The flipped-voltage-follower (FVF) cell is adopted in the low pass filter (LPF) and the variable gain amplifier (VGA) for its high linearity and low power consumption. Fabricated in 65nm LP CMOS process, the proposed receiver front-end occupies 0.37mm2 core area, with a tolerable input power ranging from -91.5dBm to -1dBm for 500kbps GMSK signal at 924MHz frequency. The power consumption is 1mW power under a 1.2V supply.
Beomjin YUK Byeongseol KIM Soohyun YOON Seungbeom CHOI Joonsung BAE
This paper presents a driver status monitoring (DSM) system with body channel communication (BCC) technology to acquire the driver's physiological condition. Specifically, a conductive thread, the receiving electrode, is sewn to the surface of the seat so that the acquired signal can be continuously detected. As a signal transmission medium, body channel characteristics using the conductive thread electrode were investigated according to the driver's pose and the material of the driver's pants. Based on this, a BCC transceiver was implemented using an analog frequency modulation (FM) scheme to minimize the additional circuitry and system cost. We analyzed the heart rate variability (HRV) from the driver's electrocardiogram (ECG) and displayed the heart rate and Root Mean Square of Successive Differences (RMSSD) values together with the ECG waveform in real-time. A prototype of the DSM system with commercial-off-the-shelf (COTS) technology was implemented and tested. We verified that the proposed approach was robust to the driver's movements, showing the feasibility and validity of the DSM with BCC technology using a conductive thread electrode.
Go URAKAWA Hiroyuki KOBAYASHI Jun DEGUCHI Ryuichi FUJIMOTO
In general, since the in-band noise of phase-locked loops (PLLs) is mainly caused by charge pumps (CPs), large-size transistors that occupy a large area are used to improve in-band noise of CPs. With the high demand for low phase noise in recent high-performance communication systems, the issue of the trade-off between occupied area and noise in conventional CPs has become significant. A noise-canceling CP circuit is presented in this paper to mitigate the trade-off between occupied area and noise. The proposed CP can achieve lower noise performance than conventional CPs by performing additional noise cancelation. According to the simulation results, the proposed CP can reduce the current noise to 57% with the same occupied area, or can reduce the occupied area to 22% compared with that of the conventional CPs at the same noise performance. We fabricated a prototype of the proposed CP embedded in a 28-GHz LC-PLL using a 16-nm FinFET process, and 1.2-dB improvement in single sideband integrated phase noise is achieved.
Shogo SEMBA Hiroshi SAITO Masato TATSUOKA Katsuya FUJIMURA
In this paper, we propose four optimization methods during the Register Transfer Level (RTL) conversion from synchronous RTL models into asynchronous RTL models. The modularization of data-path resources and the use of appropriate D flip-flops reduce the circuit area. Fixing the control signal of the multiplexers and inserting latches for the data-path resources reduce the dynamic power consumption. In the experiment, we evaluated the effect of the proposed optimization methods. The combination of all optimization methods could reduce the energy consumption by 21.9% on average compared to the ones without the proposed optimization methods.
Zheng SUN Dingxin XU Hongye HUANG Zheng LI Hanli LIU Bangan LIU Jian PANG Teruki SOMEYA Atsushi SHIRANE Kenichi OKADA
This paper presents a miniaturized transformer-based ultra-low-power (ULP) LC-VCO with embedded supply pushing reduction techniques for IoT applications in 65-nm CMOS process. To reduce the on-chip area, a compact transformer patterned ground shield (PGS) is implemented. The transistors with switchable capacitor banks and associated components are placed underneath the transformer, which further shrinking the on-chip area. To lower the power consumption of VCO, a gm-stacked LC-VCO using the transformer embedded with PGS is proposed. The transformer is designed to provide large inductance to obtain a robust start-up within limited power consumption. Avoiding implementing an off/on-chip Low-dropout regulator (LDO) which requires additional voltage headroom, a low-power supply pushing reduction feedback loop is integrated to mitigate the current variation and thus the oscillation amplitude and frequency can be stabilized. The proposed ULP TF-based LC-VCO achieves phase noise of -114.8dBc/Hz at 1MHz frequency offset and 16kHz flicker corner with a 103µW power consumption at 2.6GHz oscillation frequency, which corresponds to a -193dBc/Hz VCO figure-of-merit (FoM) and only occupies 0.12mm2 on-chip area. The supply pushing is reduced to 2MHz/V resulting in a -50dBc spur, while 5MHz sinusoidal ripples with 50mVPP are added on the DC supply.
Jinghao YE Masao YANAGISAWA Youhua SHI
To solve the area and power problems in Finite Impulse Response (FIR) implementations, a faithfully truncated adder-based FIR design is presented in this paper for significant area and power savings while the predefined output accuracy can still be obtained. As a solution to the accuracy loss caused by truncated adders, a static error analysis on the utilization of truncated adders in FIRs was performed. According to the mathematical analysis, we show that, with a given accuracy constraint, the optimal truncated adder configuration for an area-power efficient FIR design can be effortlessly determined. Evaluation results on various FIR implementations by using the proposed faithfully truncated adder designs showed that up to 35.4% and 27.9% savings in area and power consumption can be achieved with less than 1 ulp accuracy loss for uniformly distributed random inputs. Moreover, as a case study for normally distributed signals, a fixed 6-tap FIR is implemented for electrocardiogram (ECG) signal filtering was implemented, in which even with the increased truncated bits up to 10, the mean absolute error (Ē) can be guaranteed to be less than 1 ulp while up to 29.7% and 25.3% savings in area and power can be obtained.
Shota SAKAKURA Chikara FUJIMURA Kosuke SANADA Hiroyuki HATANO Kazuo MORI
Wireless full duplex (FD) communication can double the point-to-point throughput. To fully realize the benefits of the FD technique in wireless local area networks (WLANs), it is important to design the medium access control (MAC) protocols for FD communications. In FD MAC protocols, when a node wins the channel contention and transmits a primary transmission, its destination node can start a secondary transmission triggered by the primary transmission. Each secondary transmitter transmits a data frame even if its backoff timer is not zero. However, the backoff scheme in the FD MAC protocols follows the conventional scheme based on the distributed coordination function (DCF). Therefore, the nodes with FD MAC initialize the contention window (CW) size to minimum CW (CWmin) after their successful secondary transmissions. Therefore, CW initialization in the FD MAC causes further collisions at stations (STAs), which degrades network throughput. This paper proposes a novel backoff scheme for FD MAC protocols. In the proposed scheme, the CW size and backoff timer are not initialized but kept the current value after secondary transmissions. The proposed scheme can mitigate frame collisions at STAs and increase FD-transmission opportunity in the network, and then enhance the throughput significantly. This paper presents comprehensive performance evaluation in simulations, including non-saturation and saturation conditions, and co-existence conditions with legacy half duplex (HD) STAs. For performance analysis, this paper establishes Markov-chain models for the proposed scheme. The analytical results show theoretically that the operation of the proposed scheme enhances network throughput. The simulation results and analytical results show the effectiveness of the proposed scheme.
Rui TENG Kazuto YANO Yoshinori SUZUKI
A multi-band wireless local area network (WLAN) enables flexible use of multiple frequency bands. To efficiently monitor radio resources in multi-band WLANs, a distributed-sensing system that employs a number of stations (STAs) is considered to alleviate sensing constraints at access points (APs). This paper examines the distributed sensing that expands the sensing coverage area and monitors multiple object channels by employing STA-based sensing. To avoid issuing unnecessary reports, each STA autonomously judges whether it should make a report by comparing the importance of its own sensing result and that of the overheard report. We address how to efficiently collect the necessary sensing information from a large number of STAs. We propose a reactive reporting scheme that is highly scalable by the number of STAs to collect such sensing results as the channel occupancy ratio. Evaluation results show that the proposed scheme keeps the number of reports low even if the number of STAs increases. Our proposed sensing scheme provides large sensing coverage.
This paper reviews our developed wide band human body communication technology for wearable and implantable robot control. The wearable and implantable robots are assumed to be controlled by myoelectric signals and operate according to the operator's will. The signal transmission for wearable robot control was shown to be mainly realized by electrostatic coupling, and the signal transmission for implantable robot control was shown to be mainly determined by the lossy frequency-dependent dielectric properties of human body. Based on these basic observations on signal transmission mechanisms, we developed a 10-50MHz band impulse radio transceiver based on human body communication technology, and applied it for wireless control of a robotic hand using myoelectric signals in the first time. In addition, we also examined its applicability to implantable robot control, and evaluated the communication performance of implant signal transmission using a living swine. These experimental results showed that the proposed technology is well suited for detection and transmission of biological signals for wearable and implantable robot control.
Li TAN Xiaojiang TANG Anbar HUSSAIN Haoyu WANG
To solve the problem of the self-deployment of heterogeneous directional wireless sensor networks in 3D space, this paper proposes a weighted Voronoi diagram-based self-deployment algorithm (3DV-HDDA) in 3D space. To improve the network coverage ratio of the monitoring area, the 3DV-HDDA algorithm uses the weighted Voronoi diagram to move the sensor nodes and introduces virtual boundary torque to rotate the sensor nodes, so that the sensor nodes can reach the optimal position. This work also includes an improvement algorithm (3DV-HDDA-I) based on the positions of the centralized sensor nodes. The difference between the 3DV-HDDA and the 3DV-HDDA-I algorithms is that in the latter the movement of the node is determined by both the weighted Voronoi graph and virtual force. Simulations show that compared to the virtual force algorithm and the unweighted Voronoi graph-based algorithm, the 3DV-HDDA and 3DV-HDDA-I algorithms effectively improve the network coverage ratio of the monitoring area. Compared to the virtual force algorithm, the 3DV-HDDA algorithm increases the coverage from 75.93% to 91.46% while the 3DV-HDDA-I algorithm increases coverage from 76.27% to 91.31%. When compared to the unweighted Voronoi graph-based algorithm, the 3DV-HDDA algorithm improves the coverage from 80.19% to 91.46% while the 3DV-HDDA-I algorithm improves the coverage from 72.25% to 91.31%. Further, the energy consumption of the proposed algorithms after 60 iterations is smaller than the energy consumption using a virtual force algorithm. Experimental results demonstrate the accuracy and effectiveness of the 3DV-HDDA and the 3DV-HDDA-I algorithms.
Huangtao WU Wenjin HUANG Rui CHEN Yihua HUANG
To implement the parallel acceleration of convolution operation of Convolutional Neural Networks (CNNs) on field programmable gate array (FPGA), large quantities of the logic resources will be consumed, expecially DSP cores. Many previous researches fail to make a well balance between DSP and LUT6. For better resource efficiency, a typical convolution structure is implemented with LUT6s in this paper. Besides, a novel convolution structure is proposed to further reduce the LUT6 resource consumption by modifying the typical convolution structure. The equations to evaluate the LUT6 resource consumptions of both structures are presented and validated. The theoretical evaluation and experimental results show that the novel structure can save 3.5-8% of LUT6s compared with the typical structure.
Sukhumarn ARCHASANTISUK Takahiro AOYAGI
Communication reliability and energy efficiency are important issues that have to be carefully considered in WBAN design. Due to the large path loss variation of the WBAN channel, transmission power control, which adaptively adjusts the radio transmit power to suit the channel condition, is considered in this paper. Human motion is one of the dominant factors that affect the channel characteristics in WBAN. Therefore, this paper introduces motion-aware temporal correlation model-based transmission power control that combines human motion classification and transmission power control to provide an effective approach to realizing reliable and energy-efficient WBAN communication. The human motion classification adopted in this study uses only the received signal strength to identify the human motion; no additional tool is required. The knowledge of human motion is then used to accurately estimate the channel condition and suitably select the transmit power. A performance evaluation shows that the proposed method works well both in the low and high WBAN network loads. Compared to using the fixed Tx power of -5dBm, the proposed method had similar packet loss rate but 20-28 and 27-33 percent lower average energy consumption for the low network traffic and high network traffic cases, respectively.
Ryuji KOHNO Takumi KOBAYASHI Chika SUGIMOTO Yukihiro KINJO Matti HÄMÄLÄINEN Jari IINATTI
This paper provides perspectives for future medical healthcare social services and businesses that integrate advanced information and communication technology (ICT) and data science. First, we propose a universal medical healthcare platform that consists of wireless body area network (BAN), cloud network and edge computer, big data mining server and repository with machine learning. Technical aspects of the platform are discussed, including the requirements of reliability, safety and security, i.e., so-called dependability. In addition, novel technologies for satisfying the requirements are introduced. Then primary uses of the platform for personalized medicine and regulatory compliance, and its secondary uses for commercial business and sustainable operation are discussed. We are aiming at operate the universal medical healthcare platform, which is based on the principle of regulatory science, regionally and globally. In this paper, trials carried out in Kanagawa, Japan and Oulu, Finland will be revealed to illustrate a future medical healthcare social infrastructure by expanding it to Asia-Pacific, Europe and the rest of the world. We are representing the activities of Kanagawa medical device regulatory science center and a joint proposal on security in the dependable medical healthcare platform. Novel schemes of ubiquitous rehabilitation based on analyses of the training effect by remote monitoring of activities and machine learning of patient's electrocardiography (ECG) with a neural network are proposed and briefly investigated.
Xin QI Zheng WEN Keping YU Kazunori MURATA Kouichi SHIBATA Takuro SATO
Low Power Wide Area Network (LPWAN) is designed for low-bandwidth, low-power, long-distance, large-scale connected IoT applications and realistic for networking in an emergency or restricted situation, so it has been proposed as an attractive communication technology to handle unexpected situations that occur during and/or after a disaster. However, the traditional LPWAN with its default protocol will reduce the communication efficiency in disaster situation because a large number of users will send and receive emergency information result in communication jams and soaring error rates. In this paper, we proposed a LPWAN based decentralized network structure as an extension of our previous Disaster Information Sharing System (DISS). Our network structure is powered by Named Node Networking (3N) which is based on the Information-Centric Networking (ICN). This network structure optimizes the excessive useless packet forwarding and path optimization problems with node name routing (NNR). To verify our proposal, we conduct a field experiment to evaluate the efficiency of packet path forwarding between 3N+LPWA structure and ICN+LPWA structure. Experimental results confirm that the load of the entire data transmission network is significantly reduced after NNR optimized the transmission path.
Pongphan LEELATIEN Koichi ITO Kazuyuki SAITO Manmohan SHARMA Akram ALOMAINY
This paper presents a numerical study of the wireless channel characteristics of liver implants in a frequency range of 4.5-6.5GHz, considering different digital human phantoms by employing two inhomogeneous male and female models. Path loss data for in-body to on-body and in-body to off-body communication scenarios are provided. The influence of respiration-induced organ movement on signal attenuation is demonstrated. A narrower range of attenuation deviation is observed in the female model as compared to the male model. The path loss data in the female body is between 40-80dB which is around 5-10dB lower than the male model. Path loss data for the in-body to off-body scenario in both models suggest that in-body propagation is the main component of total path loss in the channel. The results demonstrate that channel characteristics are subject dependent, and thus indicate the need to take subject dependencies into consideration when investigating in-body communication channels.
Tongxin YANG Tomoaki UKEZONO Toshinori SATO
Many applications, such as image signal processing, has an inherent tolerance for insignificant inaccuracies. Multiplication is a key arithmetic function for many applications. Approximate multipliers are considered an efficient technique to trade off energy relative to performance and accuracy for the error-tolerant applications. Here, we design and analyze four approximate multipliers that demonstrate lower power consumption and shorter critical path delay than the conventional multiplier. They employ an approximate tree compressor that halves the height of the partial product tree and generates a vector to compensate accuracy. Compared with the conventional Wallace tree multiplier, one of the evaluated 8-bit approximate multipliers reduces power consumption and critical path delay by 36.9% and 38.9%, respectively. With a 0.25% normalized mean error distance, the silicon area required to implement the multiplier is reduced by 50.3%. Our multipliers outperform the previously proposed approximate multipliers relative to power consumption, critical path delay, and design area. Results from two image processing applications also demonstrate that the qualities of the images processed by our multipliers are sufficiently accurate for such error-tolerant applications.