The search functionality is under construction.

Keyword Search Result

[Keyword] arrays(87hit)

1-20hit(87hit)

  • High-Throughput Exact Matching Implementation on FPGA with Shared Rule Tables among Parallel Pipelines Open Access

    Xiaoyong SONG  Zhichuan GUO  Xinshuo WANG  Mangu SONG  

     
    PAPER-Network System

      Vol:
    E107-B No:5
      Page(s):
    387-397

    In software defined network (SDN), packet processing is commonly implemented using match-action model, where packets are processed based on matched actions in match action table. Due to the limited FPGA on-board resources, it is an important challenge to achieve large-scale high throughput based on exact matching (EM), while solving hash conflicts and out-of-order problems. To address these issues, this study proposed an FPGA-based EM table that leverages shared rule tables across multiple pipelines to eliminate memory replication and enhance overall throughput. An out-of-order reordering function is used to ensure packet sequencing within the pipelines. Moreover, to handle collisions and increase load factor of hash table, multiple hash table blocks are combined and an auxiliary CAM-based EM table is integrated in each pipeline. To the best of our knowledge, this is the first time that the proposed design considers the recovery of out-of-order operations in multi-channel EM table for high-speed network packets processing application. Furthermore, it is implemented on Xilinx Alveo U250 field programmable gate arrays, which has a million rules and achieves a processing speed of 200 million operations per second, theoretically enabling throughput exceeding 100 Gbps for 64-Byte size packets.

  • Optimal Design of Multiuser mmWave LOS MIMO Systems Using Hybrid Arrays of Subarrays

    Zhaohu PAN  Hang LI  Xiaojing HUANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/26
      Vol:
    E107-B No:1
      Page(s):
    262-271

    In this paper, we investigate optimal design of millimeter-wave (mmWave) multiuser line-of-sight multiple-input-multiple-output (LOS MIMO) systems using hybrid arrays of subarrays based on hybrid block diagonalization (BD) precoding and combining scheme. By introducing a general 3D geometric channel model, the optimal subarray separation products of the transmitter and receiver for maximizing sum-rate is designed in terms of two regular configurations of adjacent subarrays and interleaved subarrays for different users, respectively. We analyze the sensitivity of the optimal design parameters on performance in terms of a deviation factor, and derive expressions for the eigenvalues of the multiuser equivalent LOS MIMO channel matrix, which are also valid for non-optimal design. Simulation results show that the interleaved subarrays can support longer distance communication than the adjacent subarrays given the appropriate fixed subarray deployment.

  • Optimal Design of Wideband mmWave LoS MIMO Systems Using Hybrid Arrays with Beam Squint

    Yongpeng HU  Hang LI  J. Andrew ZHANG  Xiaojing HUANG  Zhiqun CHENG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/26
      Vol:
    E107-B No:1
      Page(s):
    244-252

    Analog beamforming with broadband large-scale antenna arrays in millimeter wave (mmWave) multiple input multiple output (MIMO) systems faces the beam squint problem. In this paper, we first investigate the sensitivity of analog beamforming to subarray spatial separations in wideband mmWave systems using hybrid arrays, and propose optimized subarray separations. We then design improved analog beamforming after phase compensation based on Zadoff-Chu (ZC) sequence to flatten the frequency response of radio frequency (RF) equivalent channel. Considering a single-carrier frequency-domain equalization (SC-FDE) scheme at the receiver, we derive low-complexity linear zero-forcing (ZF) and minimum mean squared error (MMSE) equalizers in terms of output signal-to-noise ratio (SNR) after equalization. Simulation results show that the improved analog beamforming can effectively remove frequency-selective deep fading caused by beam squint, and achieve better bit-error-rate performance compared with the conventional analog beamforming.

  • A New Transformation for Costas Arrays

    Ali ARDALANI  Alexander POTT  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/08/24
      Vol:
    E106-A No:12
      Page(s):
    1504-1510

    A Costas array of size n is an n × n binary matrix such that no two of the $inom{n}{2}$ line segments connecting 1s have the same length and slope. Costas arrays are found by finite-field-based construction methods and their manipulations (systematically constructed) and exhaustive search methods. The arrays found exhaustively, which are of completely unknown origin, are called sporadic. Most studies in Costas arrays have tended to focus on systematically constructed Costas arrays rather than sporadic ones, which reveals the hardness of examining a link between systematically constructed Costas arrays and sporadic ones. This paper introduces a new transformation that preserves the Costas property for some Costas arrays, but not all. We observed that this transformation could transform some systematically constructed Costas arrays to sporadic ones and vice versa. Moreover, we introduce a family of arrays with the property that the auto-correlation of each array and the cross-correlation between any two arrays in this family is bounded above by two.

  • Silicon Photonic Optical Phased Array with Integrated Phase Monitors

    Shun TAKAHASHI  Taichiro FUKUI  Ryota TANOMURA  Kento KOMATSU  Yoshitaka TAGUCHI  Yasuyuki OZEKI  Yoshiaki NAKANO  Takuo TANEMURA  

     
    PAPER

      Pubricized:
    2023/05/25
      Vol:
    E106-C No:11
      Page(s):
    748-756

    The optical phased array (OPA) is an emerging non-mechanical device that enables high-speed beam steering by emitting precisely phase-controlled lightwaves from numerous optical antennas. In practice, however, it is challenging to drive all phase shifters on an OPA in a deterministic manner due to the inevitable fabrication-induced phase errors and crosstalk between the phase shifters. In this work, we fabricate a 16-element silicon photonic non-redundant OPA chip with integrated phase monitors and experimentally demonstrate accurate monitoring of the relative phases of light from each optical antenna. Under the beam steering condition, the optical phase retrieved from the on-chip phase monitors varies linearly with the steering angle, as theoretically expected.

  • 1-D and 2-D Beam Steering Arrays Antennas Fed by a Compact Beamforming Network for Millimeter-Wave Communication

    Jean TEMGA  Koki EDAMATSU  Tomoyuki FURUICHI  Mizuki MOTOYOSHI  Takashi SHIBA  Noriharu SUEMATSU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/04/11
      Vol:
    E106-B No:10
      Page(s):
    915-927

    In this article, a new Beamforming Network (BFN) realized in Broadside Coupled Stripline (BCS) is proposed to feed 1×4 and 2×2 arrays antenna at 28 GHZ-Band. The new BFN is composed only of couplers and phase shifters. It doesn't require any crossover compared to the conventional Butler Matrix (BM) which requires two crossovers. The tight coupling and low loss characteristics of the BCS allow a design of a compact and wideband BFN. The new BFN produces the phase differences of (±90°) and (±45°, ±135°) respectively in x- and y-directions. Its integration with a 1×4 linear array antenna reduces the array area by 70% with an improvement of the gain performance compared with the conventional array. The integration with a 2×2 array allows the realization of a full 2-D beam scanning. The proposed concept has been verified experimentally by measuring the fabricated prototypes of the BFN, the 1-D and 2-D patch arrays antennas. The measured 11.5 dBi and 11.3 dBi maximum gains are realized in θ0 = 14° and (θ0, φ0) = (45°,345°) directions respectively for the 1-D and 2-D patch arrays. The physical area of the fabricated BFN is only (0.37λ0×0.3λ0×0.08λ0), while the 1-D array and 2-D array antennas areas without feeding transmission lines are respectively (0.5λ0×2.15λ0×0.08λ0) and (0.9λ0×0.8λ0×0.08λ0).

  • On the Construction of Variable Strength Orthogonal Arrays

    Qingjuan ZHANG  Shanqi PANG  Yuan LI  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2022/09/30
      Vol:
    E106-A No:4
      Page(s):
    683-688

    Variable strength orthogonal array, as a special form of variable strength covering array, plays an important role in computer software testing and cryptography. In this paper, we study the construction of variable strength orthogonal arrays with strength two containing strength greater than two by Galois field and construct some variable strength orthogonal arrays with strength l containing strength greater than l by Fan-construction.

  • A Beam Search Method with Adaptive Beam Width Control Based on Area Size for Initial Access

    Takuto ARAI  Daisei UCHIDA  Tatsuhiko IWAKUNI  Shuki WAI  Naoki KITA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    359-366

    High gain antennas with narrow-beamforming are required to compensate for the high propagation loss expected in high frequency bands such as the millimeter wave and sub-terahertz wave bands, which are promising for achieving extremely high speeds and capacity. However using narrow-beamforming for initial access (IA) beam search in all directions incurs an excessive overhead. Using wide-beamforming can reduce the overhead for IA but it also shrinks the coverage area due to the lower beamforming gain. Here, it is assumed that there are some situations in which the required coverage distance differs depending on the direction from the antenna. For example, the distance to an floor for a ceiling-mounted antenna varies depending on the direction, and the distance to the obstruction becomes the required coverage distance for an antenna installation design that assumes line-of-sight. In this paper, we propose a novel IA beam search scheme with adaptive beam width control based on the distance to shield obstacles in each direction. Simulations and experiments show that the proposed method reduces the overhead by 20%-50% without shrinking the coverage area in shield environments compared to exhaustive beam search with narrow-beamforming.

  • Novel Configuration for Phased-Array Antenna System Employing Frequency-Controlled Beam Steering Method

    Atsushi FUKUDA  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/06/10
      Vol:
    E105-C No:12
      Page(s):
    740-749

    This paper presents a novel frequency-controlled beam steering scheme for a phased-array antenna system (PAS). The proposed scheme employs phase-controlled carrier signals to form the PAS beam. Two local oscillators (LOs) and delay lines are used to generate the carrier signals. The carrier of one LO is divided into branches, and then the divided carriers passing through the corresponding delay lines have the desired phase relationship, which depends on the oscillation frequency of the LO. To confirm the feasibility of the scheme, four-branch PAS transmitters are configured and tested in a 10-GHz frequency band. The results verify that the formed beam is successfully steered in a wide range, i.e., the 3-dB beamwidth of approximately 100 degrees, using LO frequency control.

  • Upper Bounds and Constructions of Locating Arrays

    Ce SHI  Jianfeng FU  Chengmin WANG  Jie YAN  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2020/11/13
      Vol:
    E104-A No:5
      Page(s):
    827-833

    The use of locating arrays is motivated by the use of generating software test suites to locate interaction faults in component-based systems. In this paper, we introduce a new combinatorial configuration, with which a general combinatorial description of $(ar{1},t)$-locating arrays is presented. Based on this characterization, a number of locating arrays by means of SSOA and difference covering arrays with prescribed properties are constructed effectively. As a consequence, upper bounds on the size of locating arrays with small number of factors are then obtained.

  • Sidelobe Suppression in Both the E and H Planes Using Slit Layers over a Corporate-Feed Waveguide Slot Array Antenna Consisting of 2×2-Element Radiating Units

    Haruka ARAKAWA  Takashi TOMURA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/03/16
      Vol:
    E103-B No:9
      Page(s):
    960-968

    The sidelobe level at tilts around 30-40 degrees in both the E and H planes due to a tapered excitation of units of 2×2 radiation slots is suppressed by introducing slit layers over a corporate-feed waveguide slot array antenna. The slit layers act as averaging the excitation of the adjacent radiating slots for sidelobe suppression in both planes. A 16×16-element array in the 70GHz band is fabricated. At the design frequency, the sidelobe levels at tilts around 30-40 degrees are suppressed from -25.4dB to -31.3dB in the E-plane and from -27.1dB to -38.9dB in the H-plane simultaneously as confirmed by measurements. They are suppressed over the desired range of 71.0-76.0GHz frequencies, compared to the conventional antenna.

  • Effective Direction-of-Arrival Estimation Algorithm by Exploiting Fourier Transform for Sparse Array

    Zhenyu WEI  Wei WANG  Ben WANG  Ping LIU  Linshu GONG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2159-2166

    Sparse arrays can usually achieve larger array apertures than uniform linear arrays (ULA) with the same number of physical antennas. However, the conventional direction-of-arrival (DOA) estimation algorithms for sparse arrays usually require the spatial smoothing operation to recover the matrix rank which inevitably involves heavy computational complexity and leads to a reduction in the degrees-of-freedom (DOFs). In this paper, a low-complex DOA estimation algorithm by exploiting the discrete Fourier transform (DFT) is proposed. Firstly, the spatial spectrum of the virtual array constructed from the sparse array is established by exploiting the DFT operation. The initial DOA estimation can obtain directly by searching the peaks in the DFT spectrum. However, since the number of array antennas is finite, there exists spectrum power leakage which will cause the performance degradation. To further improve the angle resolution, an iterative process is developed to suppress the spectrum power leakage. Thus, the proposed algorithm does not require the spatial smoothing operation and the computational complexity is reduced effectively. In addition, due to the extention of DOF with the application of the sparse arrays, the proposed algorithm can resolve the underdetermined DOA estimation problems. The superiority of the proposed algorithm is demonstrated by simulation results.

  • Low Power and Reduced Hardware UWB Beamformers for Future 5G Communications Open Access

    John L. VOLAKIS  Rimon HOKAYEM  Satheesh Bojja VENKATAKRISHNAN  Elias A. ALWAN  

     
    INVITED PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    166-173

    We present a novel hybrid beamforming architecture for high speed 5G technologies. The architecture combines several new concepts to achieve significant hardware and cost reduction for large antenna arrays. Specifically, we employ an on-site code division multiplexing scheme to group several antenna elements into a single analog-to-digital converter (ADC). This approach significantly reduces analog hardware and power requirements by a factor of 8 to 32. Additionally, we employ a novel analog frequency independent beamforming scheme to eliminate phase shifters altogether and allow for coherent combining at the analog front-end. This approach avoids traditional phase-shifter-based approaches typically associated with bulky and inefficient components. Preliminary analysis shows that for an array of 800 elements, as much as 97% reduction in cost and power is achieved using the hybrid beamformer as compared to conventional beamformer systems.

  • Design and Analysis of First-Order Steerable Nonorthogonal Differential Microphone Arrays

    Qiang YU  Xiaoguang WU  Yaping BAO  

     
    LETTER-Engineering Acoustics

      Vol:
    E101-A No:10
      Page(s):
    1687-1692

    Differential microphone arrays have been widely used in hands-free communication systems because of their frequency-invariant beampatterns, high directivity factors and small apertures. Considering the position of acoustic source always moving within a certain range in real application, this letter proposes an approach to construct the steerable first-order differential beampattern by using four omnidirectional microphones arranged in a non-orthogonal circular geometry. The theoretical analysis and simulation results show beampattern constructed via this method achieves the same direction factor (DF) as traditional DMAs and higher white noise gain (WNG) within a certain angular range. The simulation results also show the proposed method applies to processing speech signal. In experiments, we show the effectiveness and small computation amount of the proposed method.

  • Construction of Asymmetric Orthogonal Arrays of Strength t from Orthogonal Partition of Small Orthogonal Arrays

    Shanqi PANG  Xiao LIN  Jing WANG  

     
    LETTER-Information Theory

      Vol:
    E101-A No:8
      Page(s):
    1267-1272

    In this study, we developed a new orthogonal partition concept for asymmetric orthogonal arrays and used it for the construction of orthogonal arrays for the first time. Permutation matrices and the Kronecker product were also successfully and skillfully used as our main tools. Hence, a new general iterative construction method for asymmetric orthogonal arrays of high strength was developed, and some new infinite families of orthogonal arrays of strength 3 and several new orthogonal arrays of strength 4, 5, and 6 were obtained.

  • Efficient Transceiver Design for Large-Scale SWIPT System with Time-Switching and Power-Splitting Receivers

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/12
      Vol:
    E101-B No:7
      Page(s):
    1744-1751

    The combination of large-scale antenna arrays and simultaneous wireless information and power transfer (SWIPT), which can provide enormous increase of throughput and energy efficiency is a promising key in next generation wireless system (5G). This paper investigates efficient transceiver design to minimize transmit power, subject to users' required data rates and energy harvesting, in large-scale SWIPT system where the base station utilizes a very large number of antennas for transmitting both data and energy to multiple users equipped with time-switching (TS) or power-splitting (PS) receive structures. We first propose the well-known semidefinite relaxation (SDR) and Gaussian randomization techniques to solve the minimum transmit power problems. However, for these large-scale SWIPT problems, the proposed scheme, which is based on conventional SDR method, is not suitable due to its excessive computation costs, and a consensus alternating direction method of multipliers (ADMM) cannot be directly applied to the case that TS or PS ratios are involved in the optimization problem. Therefore, in the second solution, our first step is to optimize the variables of TS or PS ratios, and to achieve simplified problems. After then, we propose fast algorithms for solving these problems, where the outer loop of sequential parametric convex approximation (SPCA) is combined with the inner loop of ADMM. Numerical simulations show the fast convergence and superiority of the proposed solutions.

  • Wideband Adaptive Beamforming Algorithm for Conformal Arrays Based on Sparse Covariance Matrix Reconstruction

    Pei CHEN  Dexiu HU  Yongjun ZHAO  Chengcheng LIU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    548-554

    Aiming at solving the performance degradation caused by the covariance matrix mismatch in wideband beamforming for conformal arrays, a novel adaptive beamforming algorithm is proposed in this paper. In this algorithm, the interference-plus-noise covariance matrix is firstly reconstructed to solve the desired signal contamination problem. Then, a sparse reconstruction method is utilized to reduce the high computational cost and the requirement of sampling data. A novel cost function is formulated by the focusing matrix and singular value decomposition. Finally, the optimization problem is efficiently solved in a second-order cone programming framework. Simulation results using a cylindrical array demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing wideband beamforming methods for conformal arrays.

  • Iterative Constructions of Orthogonal Arrays of Strength t and Orthogonal Partitions

    Shanqi PANG  Ying WANG  Jiao DU  Wenju XU  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:1
      Page(s):
    308-311

    Orthogonal arrays and orthogonal partitions have great significance in communications and coding theory. In this letter, by using a generalized orthogonal partition, Latin squares and orthogonal Latin squares, we present an iterative construction method of orthogonal arrays of strength t and orthogonal partitions. As an application of the method, more orthogonal arrays of strength t and orthogonal partitions than the existing methods can be constructed.

  • Design of a Compact Sound Localization Device on a Stand-Alone FPGA-Based Platform

    Mauricio KUGLER  Teemu TOSSAVAINEN  Susumu KUROYANAGI  Akira IWATA  

     
    PAPER-Computer System

      Pubricized:
    2016/07/26
      Vol:
    E99-D No:11
      Page(s):
    2682-2693

    Sound localization systems are widely studied and have several potential applications, including hearing aid devices, surveillance and robotics. However, few proposed solutions target portable systems, such as wearable devices, which require a small unnoticeable platform, or unmanned aerial vehicles, in which weight and low power consumption are critical aspects. The main objective of this research is to achieve real-time sound localization capability in a small, self-contained device, without having to rely on large shaped platforms or complex microphone arrays. The proposed device has two surface-mount microphones spaced only 20 mm apart. Such reduced dimensions present challenges for the implementation, as differences in level and spectra become negligible, and only time-difference of arrival (TDoA) can be used as a localization cue. Three main issues have to be addressed in order to accomplish these objectives. To achieve real-time processing, the TDoA is calculated using zero-crossing spikes applied to the hardware-friendly Jeffers model. In order to make up for the reduction in resolution due to the small dimensions, the signal is upsampled several-fold within the system. Finally, a coherence-based spectral masking is used to select only frequency components with relevant TDoA information. The proposed system was implemented on a field-programmable gate array (FPGA) based platform, due to the large amount of concurrent and independent tasks, which can be efficiently parallelized in reconfigurable hardware devices. Experimental results with white-noise and environmental sounds show high accuracies for both anechoic and reverberant conditions.

  • Real-Time Hardware Implementation of a Sound Recognition System with In-Field Learning

    Mauricio KUGLER  Teemu TOSSAVAINEN  Miku NAKATSU  Susumu KUROYANAGI  Akira IWATA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/03/30
      Vol:
    E99-D No:7
      Page(s):
    1885-1894

    The development of assistive devices for automated sound recognition is an important field of research and has been receiving increased attention. However, there are still very few methods specifically developed for identifying environmental sounds. The majority of the existing approaches try to adapt speech recognition techniques for the task, usually incurring high computational complexity. This paper proposes a sound recognition method dedicated to environmental sounds, designed with its main focus on embedded applications. The pre-processing stage is loosely based on the human hearing system, while a robust set of binary features permits a simple k-NN classifier to be used. This gives the system the capability of in-field learning, by which new sounds can be simply added to the reference set in real-time, greatly improving its usability. The system was implemented in an FPGA based platform, developed in-house specifically for this application. The design of the proposed method took into consideration several restrictions imposed by the hardware, such as limited computing power and memory, and supports up to 12 reference sounds of around 5.3 s each. Experimental results were performed in a database of 29 sounds. Sensitivity and specificity were evaluated over several random subsets of these signals. The obtained values for sensitivity and specificity, without additional noise, were, respectively, 0.957 and 0.918. With the addition of +6 dB of pink noise, sensitivity and specificity were 0.822 and 0.942, respectively. The in-field learning strategy presented no significant change in sensitivity and a total decrease of 5.4% in specificity when progressively increasing the number of reference sounds from 1 to 9 under noisy conditions. The minimal signal-to-noise ration required by the prototype to correctly recognize sounds was between -8 dB and 3 dB. These results show that the proposed method and implementation have great potential for several real life applications.

1-20hit(87hit)