The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] level converter(12hit)

1-12hit
  • Research on Stability of MMC-Based Medium Voltage DC Bus on Ships Based on Lyapunov Method Open Access

    Liang FANG  Xiaoyan XU  Tomasz TARASIUK  

     
    PAPER

      Pubricized:
    2022/05/09
      Vol:
    E105-C No:11
      Page(s):
    675-683

    Modular multilevel converters (MMCs) are an emerging and promising option for medium voltage direct current (MVDC) of all- electric ships. In order to improve the stability of the MVDC transmission system for ships, this paper presents a new control inputs-based Lyapunov strategy based on feedback linearization. Firstly, a set of dynamics equations is proposed based on separating the dynamics of AC-part currents and MMCs circulating currents. The new control inputs can be obtained by the use of feedback linearization theory applied to the dynamic equations. To complete the dynamic parts of the new control inputs from the viewpoint of MVDC system stability, the Lyapunov theory is designed some compensators to demonstrate the effects of the new control inputs on the MMCs state variable errors and its dynamic. In addition, the carrier phase shifted modulation strategy is used because of applying the few number of converter modules to the MVDC system for ships. Moreover, relying on the proposed control strategy, a simulation model is built in MATLAB/SIMULINK software, where simulation results are utilized to verify the validity of proposed control strategy in the MMC-based MVDC system for ships.

  • A Low Power Multimedia Processor Implementing Dynamic Voltage and Frequency Scaling Technique and Fast Motion Estimation Algorithm Called “Adaptively Assigned Breaking-Off Condition (A2BC)”

    Tadayoshi ENOMOTO  Nobuaki KOBAYASHI  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    424-432

    A motion estimation (ME) multimedia processor was developed by employing dynamic voltage and frequency scaling (DVFS) technique to greatly reduce the power dissipation. To make full use of the advantages of DVFS technique, a fast motion estimation (ME) algorithm was also developed. It can adaptively predict the optimum supply voltage and the optimum clock frequency before ME process starts for each macro-block for encoding. Power dissipation of the 90-nm CMOS DVFS controlled multimedia processor, which contained an absolute difference accumulator as well as a small on-chip DC/DC level converter, a minimum value detector and DVFS controller, was reduced to 38.48 µW, which was only 3.261% that of a conventional multimedia processor.

  • High-Speed Low-Power Boosted Level Converters for Dual Supply Systems

    Sang-Keun HAN  KeeChan PARK  Young-Hyun JUN  Bai-Sun KONG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E95-C No:11
      Page(s):
    1824-1826

    This paper introduces novel high-speed and low-power boosted level converters for use in dual-supply systems. The proposed level converters adopt a voltage boosting at the gate of pull-down transistors to improve driving speed and reduce contention problem. Comparison results in a 0.13-µm CMOS process indicated that the proposed level converters provided up to 70% delay reduction with up to 57% power-delay product (PDP) reduction as compared to conventional level converters.

  • Design of High-Performance CMOS Level Converters Considering PVT Variations

    Jinn-Shyan WANG  Yu-Juey CHANG  Chingwei YEH  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:5
      Page(s):
    913-916

    CMOS SoCs can reduce power consumption while maintaining performance by adopting voltage scaling (VS) technologies. The operating speed of the level converter (LC) strongly affects the effectiveness of VS technologies. However, PVT variations can cause serious problems to the LC, because the state-of-the-art LC designs do not give enough attention to this issue. In this work, we proposed to analyze the impact of PVT variations on the performance of the LC using a previously developed heuristic sizing methodology. Based on the evaluation results from different operating corners with different offset voltages and temperatures, we proposed a variation-tolerant LC that achieves both high performance and low energy with a high tolerability for PVT variations.

  • Heuristic Sizing Methodology for Designing High-Performance CMOS Level Converters with Balanced Rise and Fall Delays

    Jinn-Shyan WANG  Yu-Juey CHANG  Chingwei YEH  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E93-C No:10
      Page(s):
    1540-1543

    CMOS SoCs can reduce power consumption by adopting voltage scaling (VS) technologies, where the level converter (LC) is required between voltage domains to avoid dc current. However, the LC often induces high delay penalty and usually results in non-balanced rise and fall delays. Therefore, the performance of the LC strongly affects the effectiveness of VS technologies. In this paper, heuristic sizing methodology for designing a state-of-the-art LC is developed and proposed. Using the proposed methodology, we can design the LC to achieve high performance with balanced rise and fall delay times in a deterministic way.

  • Logic and Layout Aware Level Converter Optimization for Multiple Supply Voltage

    Liangpeng GUO  Yici CAI  Qiang ZHOU  Xianlong HONG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:8
      Page(s):
    2084-2090

    Multiple supply voltage (MSV) is an effective scheme to achieve low power. Recent works in MSV are based on physical level and aim at reducing physical overheads, but all of them do not consider level converter, which is one of the most important issues in dual-vdd design. In this work, a logic and layout aware methodology and related algorithms combining voltage assignment and placement are proposed to minimize the number of level converters and to implement voltage islands with minimal physical overheads. Experimental results show that our approach uses much fewer level converters (reduced by 83.23% on average) and improves the power savings by 16% on average compared to the previous approach [1]. Furthermore, the methodology is able to produce feasible placement with a small impact to traditional placement goals.

  • Self-Resetting Level-Conversion Flip-Flops with Direct Output Feedback for Dual-Supply SoCs

    Joo-Seong KIM  Bai-Sun KONG  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:2
      Page(s):
    240-243

    This paper describes novel CMOS level-conversion flip-flops for use in low-power SoCs with clustered voltage scaling. These flip-flops feed outputs directly into the front stage to support self-resetting and conditional operations. They thus have simple structures to avoid clock level shifting and redundant transitions, leading to substantial improvements in terms of power and area. The comparison results indicate that the proposed level-conversion flip-flops achieve power and area savings up to 50% and 31%, respectively, with no speed degradation as compared to conventional level-conversion flip-flops.

  • CMOS Level Converter with Balanced Rise and Fall Delays

    Min-su KIM  Young-Hyun JUN  Sung-Bae PARK  Bai-Sun KONG  

     
    LETTER-Electronic Circuits

      Vol:
    E90-C No:1
      Page(s):
    192-195

    A novel CMOS level converter with balanced rise and fall delays for arbitrary voltage conversion is presented. The proposed level converter was designed using a 90 nm CMOS process technology. The comparison result indicates that the maximum difference between the rise and fall delays of the proposed level converter was reduced by up to 92% compared to the conventional CMOS level converters.

  • A Wide Range 1.0-3.6 V 200 Mbps, Push-Pull Output Buffer Using Parasitic Bipolar Transistors

    Takahiro SHIMADA  Hiromi NOTANI  Yasunobu NAKASE  Hiroshi MAKINO  Shuhei IWADE  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    571-577

    We proposed a push-pull output buffer that maintains the data transmission rate for lower supply voltages. It operates at an internal supply voltage (VDD) of 0.7-1.6 V and an interface supply voltage (VDDX) of 1.0-3.6 V. In low VDDX operation, the output buffer utilizes parasitic bipolar transistors instead of MOS transistors to maintain drivability. Furthermore forward body bias (FBB) control is provided for the level converter in low VDD operation. We fabricated a test chip with a standard 0.15 µm CMOS process. Measurement results indicate that the proposed output buffer achieves 200 Mbps operation at VDD of 0.7 V and VDDX of 1.0 V.

  • µI/O Architecture: A Power-Aware Interconnect Circuit Design for SoC and SiP

    Yusuke KANNO  Hiroyuki MIZUNO  Nobuhiro OODAIRA  Yoshihiko YASU  Kazumasa YANAGISAWA  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    589-597

    A power-aware interconnect circuit design--called µI/O architecture--has been developed to provide low-cost system solutions for System-on-Chip (SoC) and System-in-Package (SiP) technologies. The µI/O architecture provides a common interface throughout the module enabling hierarchical I/O design for SoC and SiP. The hierarchical I/O design allows the driver size to be optimized without increasing design complexity. Moreover, it includes a signal-level converter for integrating wide-voltage-range circuit blocks and a signal wall function for turning off each block independently--without invalid signal transmission--by using an internal power switch.

  • A 1 V, 10.4 mW Low Power DSP Core for Mobile Wireless Use

    Shoichiro KAWASHIMA  Tetsuyoshi SHIOTA  Isao FUKUSHI  Ryuhei SASAGAWA  Wataru SHIBAMOTO  Atsushi TSUCHIYA  Teruo ISHIHARA  

     
    PAPER

      Vol:
    E83-C No:11
      Page(s):
    1739-1746

    An 1 V, 50 MHz, 16-bit DSP core was developed using a 0.25-µm Dual Vt library, SRAM, and Mask ROM tailored for 1 V operation. The core speed was 41% enhanced using an alternate MAC and 2-stage execution pipeline. A 1.0 V to 1.5 V voltage up converter with 59% power efficiency and a 450 ps 1 V to 2.5 V level converter were implemented. An new long wire delay estimation method enhanced the synthesis. The measured power consumption at 0.9 V was 8.7 mW, which was 40% less than the power of the normal library's at 1.3 V, when the PSI-CELP CODEC firmware was run at 40 MHz.

  • A High-Speed Feed-Forward BiNMOS Driver for Low-Voltage LSls

    Takakuni DOUSEKI  Shin'ichiro MUTOH  

     
    PAPER

      Vol:
    E76-C No:5
      Page(s):
    687-694

    A feed-forward (FF) BiNMOS driver that combines a multi-stage CMOS inverter and a bipolar emitter-follower transistor is proposed as a low-voltage BiCMOS driver. High-speed and low-voltage operation is made possible by a multi-stage inverter and feed-forward control from the pre-stage inverters to the bipolar emitter-follower. Two key factors determining the driver delay time, output load capacitance and wiring resistance, are described and analyzed in detail. Experiments with a gate-chains test chip fabricated with 0.5-µm BiCMOS technology confirm the low-voltage operation of the FF-BiNMOS driver. Applications of the new driver to a BiCMOS SRAM are also described.