The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] null(48hit)

1-20hit(48hit)

  • Unified 6G Waveform Design Based on DFT-s-OFDM Enhancements

    Juan LIU  Xiaolin HOU  Wenjia LIU  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/12/05
      Vol:
    E106-B No:6
      Page(s):
    528-537

    To achieve the extreme high data rate and extreme coverage extension requirements of 6G wireless communication, new spectrum in sub-THz (100-300GHz) and non-terrestrial network (NTN) are two of the macro trends of 6G candidate technologies, respectively. However, non-linearity of power amplifiers (PA) is a critical challenge for both sub-THz and NTN. Therefore, high power efficiency (PE) or low peak to average power ratio (PAPR) waveform design becomes one of the most significant 6G research topics. Meanwhile, high spectral efficiency (SE) and low out-of-band emission (OOBE) are still important key performance indicators (KPIs) for 6G waveform design. Single-carrier waveform discrete Fourier transform spreading orthogonal frequency division multiplexing (DFT-s-OFDM) has achieved many research interests due to its high PE, and it has been supported in 5G New Radio (NR) when uplink coverage is limited. So DFT-s-OFDM can be regarded as a candidate waveform for 6G. Many enhancement schemes based on DFT-s-OFDM have been proposed, including null cyclic prefix (NCP)/unique word (UW), frequency-domain spectral shaping (FDSS), and time-domain compression and expansion (TD-CE), etc. However, there is no unified framework to be compatible with all the enhancement schemes. This paper firstly provides a general description of the 6G candidate waveforms based on DFT-s-OFDM enhancement. Secondly, the more flexible TD-CE supporting methods for unified non-orthogonal waveform (uNOW) are proposed and discussed. Thirdly, a unified waveform framework based on DFT-s-OFDM structure is proposed. By designing the pre-processing and post-processing modules before and after DFT in the unified waveform framework, the three technical methods (NCP/UW, FDSS, and TD-CE) can be integrated to improve three KPIs of DFT-s-OFDM simultaneously with high flexibility. Then the implementation complexity of the 6G candidate waveforms are analyzed and compared. Performance of different DFT-s-OFDM enhancement schemes is investigated by link level simulation, which reveals that uNOW can achieve the best PAPR performance among all the 6G candidate waveforms. When considering PA back-off, uNOW can achieve 124% throughput gain compared to traditional DFT-s-OFDM.

  • New Restricted Isometry Condition Using Null Space Constant for Compressed Sensing

    Haiyang ZOU  Wengang ZHAO  

     
    PAPER-Information Theory

      Pubricized:
    2022/06/20
      Vol:
    E105-A No:12
      Page(s):
    1591-1603

    It has been widely recognized that in compressed sensing, many restricted isometry property (RIP) conditions can be easily obtained by using the null space property (NSP) with its null space constant (NSC) 0<θ≤1 to construct a contradicted method for sparse signal recovery. However, the traditional NSP with θ=1 will lead to conservative RIP conditions. In this paper, we extend the NSP with 0<θ<1 to a scale NSP, which uses a factor τ to scale down all vectors belonged to the Null space of a sensing matrix. Following the popular proof procedure and using the scale NSP, we establish more relaxed RIP conditions with the scale factor τ, which guarantee the bounded approximation recovery of all sparse signals in the bounded noisy through the constrained l1 minimization. An application verifies the advantages of the scale factor in the number of measurements.

  • PAPR Reduction of OFDM Signals Using Null Space in MIMO Channel for MIMO Amplify-and-Forward Relay Transmission Open Access

    Yuki SEKIGUCHI  Nobuhide NONAKA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/22
      Vol:
    E105-B No:9
      Page(s):
    1078-1086

    In this paper, we propose applying our previously reported adaptive peak-to-average power ratio (PAPR) reduction method using null space in a multiple-input multiple-output (MIMO) channel for orthogonal frequency division multiplexing (OFDM) signals to the downlink MIMO amplify-and-forward (AF) relaying transmission. Assuming MIMO-OFDM transmission, mitigating its high PAPR not only at the base station (BS) but also at the relay station (RS) transmitters is essential to achieve sufficient coverage enhancement from the RSs by minimizing the transmission power backoff levels at the nonlinear power amplifier. In this study, we assume an AF-type RS with multiple antennas. In the proposed method, the BS suppresses the PAPR of the transmitted signal through adaptive PAPR reduction utilizing the null space of the integrated overall MIMO channel that combines the channel between the BS and RS and the channel between the RS and a set of user equipment (UE). However, the PAPR of the received signal at each RS antenna is increased again due to the MIMO channel between the BS and RS. The proposed method reduces this increased PAPR at the AF-type RS transmitter by PAPR reduction processing that utilizes the null space in the MIMO channel between the RS and UE. Since the in-band PAPR reduction signal added at the RS transmitter is transmitted only in the null space of the MIMO channel between the RS and UE, interference at the UE receiver is mitigated. Computer simulation results show that the proposed method significantly improves the PAPR-vs.-throughput performance compared to that for the conventional one thanks to the reduced interference levels from the PAPR reduction signal observed at the UE receiver.

  • A Modified Whale Optimization Algorithm for Pattern Synthesis of Linear Antenna Array

    Wentao FENG  Dexiu HU  

     
    LETTER-Numerical Analysis and Optimization

      Pubricized:
    2020/11/09
      Vol:
    E104-A No:5
      Page(s):
    818-822

    A modified whale optimization algorithm (MWOA) with dynamic leader selection mechanism and novel population updating procedure is introduced for pattern synthesis of linear antenna array. The current best solution is dynamic changed for each whale agent to overcome premature with local optima in iteration. A hybrid crossover operator is embedded in original algorithm to improve the convergence accuracy of solution. Moreover, the flow of population updating is optimized to balance the exploitation and exploration ability. The modified algorithm is tested on a 28 elements uniform linear antenna array to reduce its side lobe lever and null depth lever. The simulation results show that MWOA algorithm can improve the performance of WOA obviously compared with other algorithms.

  • Subcarrier and Interleaver Assisted Burst Impulsive Noise Mitigation in Power Line Communication

    Zhouwen TAN  Ziji MA  Hongli LIU  Keli PENG  Xun SHAO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2020/11/02
      Vol:
    E104-D No:2
      Page(s):
    246-253

    Impulsive noise (IN) is the most dominant factor degrading the performance of communication systems over powerlines. In order to improve performance of high-speed power line communication (PLC), this work focuses on mitigating burst IN effects based on compressive sensing (CS), and an adaptive burst IN mitigation method, namely combination of adaptive interleaver and permutation of null carriers is designed. First, the long burst IN is dispersed by an interleaver at the receiver and the characteristic of noise is estimated by the method of moment estimation, finally, the generated sparse noise is reconstructed by changing the number of null carriers(NNC) adaptively according to noise environment. In our simulations, the results show that the proposed IN mitigation technique is simple and effective for mitigating burst IN in PLC system, it shows the advantages to reduce the burst IN and to improve the overall system throughput. In addition, the performance of the proposed technique outpeformences other known nonlinear noise mitigation methods and CS methods.

  • Run-Length Constraint of Cyclic Reverse-Complement and Constant GC-Content DNA Codes

    Ramy TAKI ELDIN  Hajime MATSUI  

     
    PAPER-Coding Theory

      Vol:
    E103-A No:1
      Page(s):
    325-333

    In DNA data storage and computation, DNA strands are required to meet certain combinatorial constraints. This paper shows how some of these constraints can be achieved simultaneously. First, we use the algebraic structure of irreducible cyclic codes over finite fields to generate cyclic DNA codes that satisfy reverse and complement properties. We show how such DNA codes can meet constant guanine-cytosine content constraint by MacWilliams-Seery algorithm. Second, we consider fulfilling the run-length constraint in parallel with the above constraints, which allows a maximum predetermined number of consecutive duplicates of the same symbol in each DNA strand. Since irreducible cyclic codes can be represented in terms of the trace function over finite field extensions, the linearity of the trace function is used to fulfill a predefined run-length constraint. Thus, we provide an algorithm for constructing cyclic DNA codes with the above properties including run-length constraint. We show numerical examples to demonstrate our algorithms generating such a set of DNA strands with all the prescribed constraints.

  • A Stereo Wind-Noise Suppressor with Null Beamforming and Frequency-Domain Noise Averaging

    Masanori KATO  Akihiko SUGIYAMA  Tatsuya KOMATSU  

     
    PAPER-Digital Signal Processing

      Vol:
    E101-A No:10
      Page(s):
    1631-1637

    This paper proposes a stereo wind-noise suppressor with frequency-domain noise averaging. A directional gain for diffuse wind noise is estimated frame by frame using a null beamformer based on interchannel phase difference which blocks the target signal. The wind-noise gain estimate is commonly multiplied by the input noisy signal to generate channel dependent wind noise estimates in order to cope with interchannel wind-noise imbalance. Interchannel phase agreement by target signal dominance or incidentally equal wind-noise phase, which leads to underestimation, is offset by averaging channel dependent wind-noise estimates along frequency. Evaluation results show that the mean PESQ score by the proposed wind-noise suppressor reaches 2.1 which is 0.2 higher than that by the wind-noise suppressor without averaging and 0.3 higher than that by a conventional monaural-noise suppressor with a statistically significant difference.

  • Digital Self-Interference Cancellation for LTE-Compatible In-Band Full-Duplex Systems

    Changyong SHIN  Jiho HAN  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:5
      Page(s):
    822-830

    In this paper, we present self-interference (SI) cancellation techniques in the digital domain for in-band full-duplex systems employing orthogonal frequency division multiple access (OFDMA) in the downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) in the uplink (UL), as in the long-term evolution (LTE) system. The proposed techniques use UL subcarrier nulling to accurately estimate SI channels without any UL interference. In addition, by exploiting the structures of the transmitter imperfection and the known or estimated parameters associated with the imperfection, the techniques can further improve the accuracy of SI channel estimation. We also analytically derive the lower bound of the mean square error (MSE) performance and the upper bound of the signal-to-interference-plus-noise ratio (SINR) performance for the techniques, and show that the performance of the techniques are close to the bounds. Furthermore, by utilizing the SI channel estimates and the nonlinear signal components of the SI caused by the imperfection to effectively eliminate the SI, the proposed techniques can achieve SINR performance very close to the one in perfect SI cancellation. Finally, because the SI channel estimation of the proposed techniques is performed in the time domain, the techniques do not require symbol time alignment between SI and UL symbols.

  • Experimental Verification of Null-Space Expansion for Multiuser Massive MIMO via Channel State Information Measurement

    Tatsuhiko IWAKUNI  Kazuki MARUTA  Atsushi OHTA  Yushi SHIRATO  Masataka IIZUKA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    877-884

    This paper presents experimental results of our proposed null-space expansion scheme for multiuser massive multiple-input multiple-output (MIMO) in time varying channels. Multiuser MIMO transmission with the proposed scheme can suppress the inter-user interference (IUI) caused by outdated channel state information (CSI). The excess degrees of freedom (DoFs) of massive MIMO is exploited to perform additional null-steering using past estimated CSI. The signal-to-interference power ratio (SIR) and spectral efficiency performances achieved by the proposed scheme that uses measured CSI is experimentally evaluated. It is confirmed that the proposed scheme shows performance superior to the conventional channel prediction scheme. In addition, IUI can be stably suppressed even in high mobility environments by further increasing the null-space dimension.

  • Null-Space Expansion for Multiuser Massive MIMO Inter-User Interference Suppression in Time Varying Channels Open Access

    Tatsuhiko IWAKUNI  Kazuki MARUTA  Atsushi OHTA  Yushi SHIRATO  Takuto ARAI  Masataka IIZUKA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    865-873

    This paper proposes a null-space expansion scheme for multiuser massive MIMO transmission in order to suppress inter-user interference (IUI) triggered by the temporal variation of the channel. The downlink multiuser MIMO channel capacity of time varying channels is severely degraded since IUI must be suppressed at the transmitter side by using past estimated channel state information at the transmitter side (CSIT). Massive MIMO has emerged as one of the most promising technologies for further capacity enhancement by increasing the number of base station (BS) antenna elements. Exploiting the excess degrees of freedom (DoFs) inherent in massive MIMO, a BS with the proposed IUI suppression scheme performs multiple null-steering for each UE (User Equipment) antenna element, which expands the null-space dimension. Computer simulations show that the proposed scheme has superior IUI suppression performance to the existing channel prediction scheme in time varying channels.

  • Pattern Synthesis of Sparse Linear Arrays Using Spider Monkey Optimization

    Huaning WU  Yalong YAN  Chao LIU  Jing ZHANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/10/06
      Vol:
    E100-B No:3
      Page(s):
    426-432

    This paper introduces and uses spider monkey optimization (SMO) for synthesis sparse linear arrays, which are composed of a uniformly spaced core subarray and an extended sparse subarray. The amplitudes of all the elements and the locations of elements in the extended sparse subarray are optimized by the SMO algorithm to reduce the side lobe levels of the whole array, under a set of practical constraints. To show the efficiency of SMO, different examples are presented and solved. Simulation results of the sparse arrays designed by SMO are compared with published results to verify the effectiveness of the SMO method.

  • Novel Cellular Active Array Antenna System at Base Station for Beyond 4G Open Access

    Masayuki NAKANO  

     
    INVITED PAPER

      Vol:
    E100-B No:2
      Page(s):
    195-202

    This paper introduces a base station antenna system as a future cellular technology. The base station antenna system is the key to achieving high-speed data transmission. It is particularly important to improve the frequency reuse factor as one of the roles of a base station. Furthermore, in order to solve the interference problem due to the same frequency being used by the macro cell and the small cell, the author focuses on beam and null control using an AAS (Active Antenna System) and elucidates their effects through area simulations and field tests. The results showed that AAS can improve the SINR (signal to interference-plus-noise ratio) of the small cell area inside macro cells. The paper shows that cell quality performance can be improved by incorporating the AAS into a cellular base station as its antenna system for beyond 4G radio access technology including the 5G cellular system.

  • A Broadened and Deepened Anti-Jamming Technology for High-Dynamic GNSS Array Receivers

    Li-wen CHEN  Jian-sheng ZHENG  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:9
      Page(s):
    2055-2061

    Outside wireless signals often obstruct GNSS receivers from acquiring satellite signals. Traditional anti-jamming algorithms are used to suppress interference using a convex optimization method based on minimizing output power. These algorithms can reduce interference. However, these models suppress satellite signals as well as jamming interference. Under the high-dynamic condition, the output signal-to-interference-and-noise ratio (SINR) deteriorates seriously and the success rate in acquiring satellite signals falls accordingly. This paper introduces a novel, broadened model with a no-main-lobe-and-multi-virtual-null-constraints (NMLCB) method based on maximizing output power and constraining interference sources. With the new method, GNSS receivers can receive satellite signals more easily than using the power inversion (PI) and power minimization with derivative constraints null (NB) methods under the high-dynamic condition.

  • Self Optimization Beam-Forming Null Control Based SINR Improvement

    Modick BASNET  Jeich MAR  

     
    PAPER-Measurement Technology

      Vol:
    E99-A No:5
      Page(s):
    963-972

    In this paper, a self optimization beamforming null control (SOBNC) scheme is proposed. There is a need of maintaining signal to interference plus noise ratio (SINR) threshold to control modulation and coding schemes (MCS) in recent technologies like Wi-Fi, Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A). Selection of MCS depends on the SINR threshold that allows maintaining key performance index (KPI) like block error rate (BLER), bit error rate (BER) and throughput at certain level. The SOBNC is used to control the antenna pattern for SINR estimation and improve the SINR performance of the wireless communication systems. The nulling comes with a price; if wider nulls are introduced, i.e. more number of nulls are used, the 3dB beam-width and peak side lobe level (SLL) in antenna pattern changes critically. This paper proposes a method which automatically controls the number of nulls in the antenna pattern as per the changing environment based on adaptive-network based fuzzy interference system (ANFIS) to maintain output SINR level higher or equal to the required threshold. Finally, simulation results show a performance superiority of the proposed SOBNC compared with minimum mean square error (MMSE) based adaptive nulling control algorithm and conventional fixed null scheme.

  • An Optimal Design of MIMO Full-Duplex Relay with Spatial-Domain Self-Interference Nulling Scheme

    Byungjin CHUN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:1
      Page(s):
    260-266

    An optimal design method of linear processors intended for a multi-input multi-output (MIMO) full-duplex (FD) amplify-and-forward (AF) relay network is presented under the condition of spatial-domain self-interference nulling. This method is designed to suit the availability of channel state information (CSI). If full CSI of source station (SS)-relay station (RS), RS-RS (self-interference channel), and RS-destination station (DS) links are available, the instantaneous end-to-end capacity is maximized. Otherwise, if CSI of the RS-DS link is either partially available (only covariance is known), or not available, while CSI of the other links is known, then the ergodic end-to-end capacity is maximized. Performance of the proposed FD-AF relay system is demonstrated through computer simulations, especially under various correlation conditions of the RS-DS link.

  • Field Experimental Evaluation of Null Control Performance of MU-MIMO Considering Smart Vertical MIMO in LTE-Advanced Downlink under LOS Dominant Conditions

    Yuki INOUE  Daiki TAKEDA  Keisuke SAITO  Teruo KAWAMURA  Hidehiro ANDOH  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2136-2144

    The performance in terms of the user separation of multi-user multiple-input multiple-output (MU-MIMO) depends on not only the spatial correlation but also the location of the mobile stations (MSs). In order to take into account the performance in terms of the user separation, we need to consider the granularity of the beam and null width of the precoded antenna pattern in addition to the spatial correlation to determine the base station (BS) antenna configuration. In this paper, we propose Smart Vertical MIMO (SV-MIMO) as the best antenna configuration that achieves both spatial correlation and granularity of the beam and null width of the precoded antenna pattern. We evaluate SV-MIMO in a field experiment using a downlink 4-by-2 MU-MIMO configuration focusing on the dependency of the location of the MSs in Yokosuka, Japan. The majority of the measurement course is under line-of-sight (LOS) conditions in a single cell environment. The MSs are almost uniformly set 30 to 60 degrees in azimuth and 12 to 30 degrees in elevation and the distance from the BS antennas is approximately 150m at maximum. We also evaluate the performance of 4-by-2 MU-MIMO using the conventional type of horizontal array antenna and show the difference. The field experimental results show that throughput of greater than 1Gbps is achieved at the Cumulative Distribution Function (CDF) of 14% by employing SV-MIMO for Rank-4 MU-MIMO. The throughput of SV-MIMO is 30% higher than that for the horizontal array antenna configuration at the CDF of 50%.

  • Combining Stability and Robustness in Reconstruction Problems via lq (0 < q ≤ 1) Quasinorm Using Compressive Sensing

    Thu L. N. NGUYEN  Yoan SHIN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:3
      Page(s):
    894-898

    Compressive sensing is a promising technique in data acquisition field. A central problem in compressive sensing is that for a given sparse signal, we wish to recover it accurately, efficiently and stably from very few measurements. Inspired by mathematical analysis, we introduce a combining scheme between stability and robustness in reconstruction problems using compressive sensing. By choosing appropriate parameters, we are able to construct a condition for reconstruction map to perform properly.

  • Sidelobe Canceller Using Multiple Quantized Weights Combining for Reducing Excitation Error

    Tasuku KURIYAMA  Kazunari KIHIRA  Toru TAKAHASHI  Yoshihiko KONISHI  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2483-2490

    This paper presents a method of reducing excitation error in sidelobe canceller without increasing the resolution of the digital phase shifters and the digital attenuators. In general sidelobe canceller, the null direction is shifted because of the excitation error (quantization error and random error, etc.) and the suppression capability degrades. The proposed method can alleviate the influence of the excitation error by vector composition of some quantized excitation weights. Computer simulation results show that the output signal to interference and noise power ratio (SINR) using the proposed method can improve greatly in comparison with that using conventional quantized excitation weight.

  • Examination of Effective UWB Avoidance Based on Experiments for Coexistence with Other Wireless Systems

    Huan-Bang LI  Kunio YATA  Kenichi TAKIZAWA  Noriaki MIYAZAKI  Takashi OKADA  Kohei OHNO  Takuji MOCHIZUKI  Eishin NAKAGAWA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E96-A No:1
      Page(s):
    274-284

    An ultra-wideband (UWB) system usually occupies a large frequency band, which may overlap with the spectrum of a narrow band system. The latter is referred to as a victim system. To effectively use frequency, a UWB system may create a notch in its spectrum to accommodate the victim signal for interference avoidance. Parameters of the notch such as the depth and the width of a notch need to be decided in accordance to victim systems. In this paper, we investigate the effective UWB avoidance by examining the suitable notch based on experimental evaluation. In the experiments, 3GPP LTE, Mobile WiMAX, as well as an IMT Advanced Test-bed are respectively employed to represent different types of victim systems. The UWB system is set up based on WiMedia specifications and operates at the UWB low band of 3.1–4.8 GHz. A notch is fabricated by nullifying the related subcarriers of the UWB signal. In addition, a filter or a window function is formed and employed to further smooth the notch. Bit error rate (BER) or packet error rate (PER) performances of victim systems are measured and used to evaluate the UWB interference. Our results show that when a notch is properly formed, the interference level introduced by UWB can be below the permitted level by regulations.

  • A Max-Min Approach to Channel Shortening in OFDM Systems

    Tsukasa TAKAHASHI  Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E96-A No:1
      Page(s):
    293-295

    In OFDM systems, residual inter-block interference can be suppressed by a time-domain equalizer that blindly shortens the effective length of a channel impulse response. To further improve the performance of blind equalizers, we propose a channel shortening method that attempts to maximize the minimum FFT output power over data subcarriers. Simulation results indicate that the max-min strategy has performance improvement over a conventional channel shortening method.

1-20hit(48hit)