Weisong LIAO Akira KAINO Tomoaki MASHIKO Sou KUROMASA Masatoshi SAKAI Kazuhiro KUDO
We observed dynamical carrier motion in an OLED device under an external reverse bias application using ExTDR measurement. The rectangular wave pulses were used in our ExTDR to observe the transient impedance of the OLED sample. The falling edge of the transmission waveform reflects the transient impedance after applying pulse voltage during the pulse width. The observed pulse width variation at the falling edge waveform indicates that the frontline of the hole distribution in the hole transport layer was forced to move backward to the ITO electrode.
Zejun ZHANG Yasuhide TSUJI Masashi EGUCHI Chun-ping CHEN
A compact optical polarization converter (PC) based on slot waveguide has been proposed in this study. Utilizing the high refractive index contrast between a Si waveguide and SiO2 cladding on the silicon-on-insulator platform, the light beam can be strongly confined in a slot waveguide structure. The proposed PC consists of a square waveguide and an L-shape cover waveguide. Since the overall structure is symmetrically distributed along the axis rotated 45-degree from the horizontal direction, the optical axis of this PC lies in the direction with equi-angle from two orthogonally polarized modes of the input and output ends, which leads to a high polarization conversion efficiency (PCE). 3D FDTD simulation results illustrate that a TE-to-TM mode conversion is achieved with a device length of 8.2 µm, and the PCE exceeds 99.8%. The structural tolerance and wavelength dependence of the PC have also been discussed in detail.
Mizuki SUGA Atsushi OHTA Kazuto GOTO Takahiro TSUCHIYA Nobuaki OTSUKI Yushi SHIRATO Naoki KITA Takeshi ONIZAWA
A propagation experiment on an actual channel is conducted to confirm the effectiveness of the 1-tap time domain beamforming (TDBF) technique we proposed in previous work. This technique offers simple beamforming for the millimeter waveband massive multiple-input multiple-output (MIMO) applied wireless backhaul and so supports the rapid deployment of fifth generation mobile communications (5G) small cells. This paper details propagation experiments in the 75GHz band and the characteristics evaluations of 1-tap TDBF as determined from actual channel measurements. The results show that 1-tap TDBF array gain nearly equals the frequency domain maximal ratio combining (MRC) value, which is ideal processing; the difference is within 0.5dB. In addition, 1-tap TDBF can improve on the signal-to-interference power ratio (SIR) by about 13% when space division multiplexing (SDM) is performed assuming existing levels of channel estimation error.
Mohammadreza GHADERI Gholamreza MORADI
In this study, a plasma loop tube is presented as a tunable VHF-UHF band plasma antenna. In plasma medium, wave radiation mechanism is due to ionized gas instead of metal. Meanwhile, the most important advantage of plasma elements is electronic tunability rather than the rigid and fixed features of metals. Here, we employ an external magnetic field as a background to affect the plasma without any shape, gas or source manipulation. Finite difference time domain (FDTD) is performed for plasma antenna analysis. The FDTD formulation should be adapted to fluid modeling of plasma in the anisotropic zone in the presence of an external magnetic field. The bandwidth coverage of 700MHz is obtained by designing correctly. Parametric study in return loss, gain and radiation pattern are studied here and other new points are presented as well.
Kentaro KATO Somsak CHOOMCHUAY
This paper analyzes the time domain Reed Solomon Decoder with FPGA implementation. Data throughput and area is carefully evaluated compared with typical frequency domain Reed Solomon Decoder. In this analysis, three hardware architecture to enhance the data throughput, namely, the pipelined architecture, the parallel architecture, and the truncated arrays, is evaluated, too. The evaluation reveals that the number of the consumed resources of RS(255, 239) is about 20% smaller than those of the frequency domain decoder although data throughput is less than 10% of the frequency domain decoder. The number of the consumed resources of the pipelined architecture is 28% smaller than that of the parallel architecture when data throughput is same. It is because the pipeline architecture requires less extra logics than the parallel architecture. To get higher data throughput, the pipelined architecture is better than the parallel architecture from the viewpoint of consumed resources.
Yuuka HIRAO Yoshinori TAKEUCHI Masaharu IMAI Jaehoon YU
Heart disease is one of the major causes of death in many advanced countries. For prevention or treatment of heart disease, getting an early diagnosis from a long time period of electrocardiogram (ECG) examination is necessary. However, it could be a large burden on medical experts to analyze this large amount of data. To reduce the burden and support the analysis, this paper proposes an arrhythmia detection method based on a deformable part model, which absorbs individual variation of ECG waveform and enables the detection of various arrhythmias. Moreover, to detect the arrhythmia in low processing delay, the proposed method only utilizes time domain features. In an experimental result, the proposed method achieved 0.91 F-measure for arrhythmia detection.
Tomohiko YANO Toru NAKURA Tetsuya IIZUKA Kunihiro ASADA
In this paper, we propose a novel gate delay time mismatch tolerant time-mode signal accumulator whose input and output are represented by a time difference of two digital signal transitions. Within the proposed accumulator, the accumulated value is stored as the time difference between the two pulses running around the same ring of a delay line, so that there is no mismatch between the periods of the two pulses, thus the output drift of the accumulator is suppressed in principle without calibrating mismatch of two rings, which is used to store the accumulated value in the conventional one. A prototype of the proposed accumulator was fabricated in 180nm CMOS. The accumulating operation is confirmed by both time and frequency domain experiments. The standard deviation of the error of the accumulating operation is 9.8ps, and compared with the previous work, the peak error over full-scale is reduced by 46% without calibrating the output drift.
Takuji MIKI Noriyuki MIURA Kento MIZUTA Shiro DOSHO Makoto NAGATA
In this paper, a 500 MHz-BW -52.5 dB-THD Voltage-to-Time Converter (VTC) in 28 nm CMOS is presented. A two-step transition inverter raises the Voltage-to-Time (VT) conversion gain to 100 ps/V which is >10x higher than a conventional current-starved inverter. The number of required inverter stages is reduced to 4 from 64, resulting in 1/8 conversion latency and thus 13.2 dB THD suppression at a 500 MHz full Nyquist frequency. A feedback control of the bias voltage in the two-step transition inverter suppresses PVT variations in the VT conversion gain. A test-chip measurement successfully demonstrates -52.5 dB THD at 500 MHz input frequency without sampling-and-hold circuits. Effective VT conversion range over +/-64 ps time difference is measured with 1.2 Vpp differential input while keeping high linearity of less than +/-0.53 LSB INL/DNL, which results in 1 ps/LSB conversion linearity. The proposed VTC occupies 84 um2 silicon area and consumes 0.18 mW at 1 GS/s.
Hideki KAWAGUCHI Thomas WEILAND
The Time Domain Boundary Element Method (TDBEM) has its advantages in the analysis of transient electromagnetic fields (wake fields) induced by a charged particle beam with curved trajectory in a particle accelerator. On the other hand, the TDBEM has disadvantages of huge required memory and computation time compared with those of the Finite Difference Time Domain (FDTD) method or the Finite Integration Technique (FIT). This paper presents a comparison of the FDTD method and 4-D domain decomposition method of the TDBEM based on an initial value problem formulation for the curved trajectory electron beam, and application to a full model simulation of the bunch compressor section of the high-energy particle accelerators.
Meng YANG Yuehu TAN Erbing LI Cong MA Yechao YOU
The unconditionally stable (US) Laguerre-FDTD method has recently attracted significant attention for its high efficiency and accuracy in modeling fine structures. One of the most attractive characteristics of this method is its marching-on-in-order solution scheme. This paper presents Hermite-Rodriguez functions as another type of orthogonal basis to implement a new 2-D US solution scheme.
Tokinobu WATANABE Masahiro HORI Taiki SARUWATARI Toshiaki TSUCHIYA Yukinori ONO
Accuracy of a method for analyzing the interface defect properties; time-domain charge pumping method, is evaluated. The method monitors the charge pumping (CP) current in time domain, and thus we expect that it gives us a noble way to investigate the interface state properties. In this study, for the purpose of evaluating the accuracy of the method, the interface state density extracted from the time-domain data is compared with that measured using the conventional CP method. The results show that they are equal to each other for all measured devices with various defect densities, demonstrating that the time-domain CP method is sufficiently accurate for the defect density evaluation.
Andreas CHWALA Ronny STOLZ Matthias SCHMELZ Vyacheslav ZAKOSARENKO Matthias MEYER Hans-Georg MEYER
Forty years after the first application of Superconducting Quantum Interference Devices (SQUIDs) [1], [2] for geophysical purposes, they have recently become a valued tool for mineral exploration. One of the most common applications is time domain (or transient) electromagnetics (TEM), an active method, where the inductive response from the ground to a changing current (mostly rectangular) in a loop on the surface is measured. After the current in the transmitter coil is switched, eddy currents are excited in the ground, which decay in a manner dependent on the conductivity of the underlying geologic structure. The resulting secondary magnetic field at the surface is measured during the off-time by a receiver coil (induced voltage) or by a magnetometer (e.g. SQUID or fluxgate). The recorded transient signal quality is improved by stacking positive and negative decays. Alternatively, the TEM results can be inverted and give the electric conductivity of the ground over depth. Since SQUIDs measure the magnetic field with high sensitivity and a constant frequency transfer function, they show a superior performance compared to conventional induction coils, especially in the presence of strong conductors. As the primary field, and especially its slew rate, are quite large, SQUID systems need to have a large slew rate and dynamic range. Any flux jump would make the use of standard stacking algorithms impossible. IPHT and Supracon are developing and producing SQUID systems based on low temperature superconductors (LTS, in our case niobium), which are now state-of-the-art. Due to the large demand, we are additionally supplying systems with high temperature superconductors (HTS, in our case YBCO). While the low temperature SQUID systems have a better performance (noise and slew rate), the high temperature SQUID systems are easier to handle in the field. The superior performance of SQUIDs compared to induction coils is the most important factor for the detection of good conductors at large depth or ore bodies underneath conductive overburden.
Mingzhe RONG Tianhui LI Xiaohua WANG Dingxin LIU Anxue ZHANG
When ultra-high-frequency (UHF) method is applied in partial discharge (PD) detection for GIS, the propagation process and rules of electromagnetic (EM) wave need to be understood clearly for conducting diagnosis and assessment about the real insulation status. The preceding researches are mainly concerning about the radial component of the UHF signal, but the propagation of the signal components in axial and radial directions and that perpendicular to the radial direction of the GIS tank are rarely considered. So in this paper, for a 252,kV GIS with T-shaped structure (TS), the propagation and attenuation of PD-induced EM wave in different circumferential angles and directions are investigated profoundly in time and frequency domain based on Finite Difference Time Domain (FDTD) method. The attenuation rules of the peak to peak value (Vpp) and cumulative energy are concluded. By comparing the results of straight branch and T branch, the influence of T-shaped structure over the propagation of different signal components are summarized. Moreover, the new circumferential and axial location methods proposed in the previous work are verified to be still applicable. This paper discusses the propagation mechanism of UHF signal in T-shaped tank, which provides some referential significance towards the utilization of UHF technique and better implementation of PD detection.
Mingfu XUE Wei LIU Aiqun HU Youdong WANG
Hardware Trojan (HT) has emerged as an impending security threat to hardware systems. However, conventional functional tests fail to detect HT since Trojans are triggered by rare events. Most of the existing side-channel based HT detection techniques just simply compare and analyze circuit's parameters and offer no signal calibration or error correction properties, so they suffer from the challenge and interference of large process variations (PV) and noises in modern nanotechnology which can completely mask Trojan's contribution to the circuit. This paper presents a novel HT detection method based on subspace technique which can detect tiny HT characteristics under large PV and noises. First, we formulate the HT detection problem as a weak signal detection problem, and then we model it as a feature extraction model. After that, we propose a novel subspace HT detection technique based on time domain constrained estimator. It is proved that we can distinguish the weak HT from variations and noises through particular subspace projections and reconstructed clean signal analysis. The reconstructed clean signal of the proposed algorithm can also be used for accurate parameter estimation of circuits, e.g. power estimation. The proposed technique is a general method for related HT detection schemes to eliminate noises and PV. Both simulations on benchmarks and hardware implementation validations on FPGA boards show the effectiveness and high sensitivity of the new HT detection technique.
In order to obtain higher diversity gain, the use of additional resources such as time, frequency, and/or antennas are necessary. The aim of this study is to achieve adequate temporal diversity gain without needing additional resources beyond decoding delay and decoding complexity. If the channel state information (CSI) is not available at the transmitter side, the transmitter sends information at a given constant transmission rate while the channel capacity varies according to the channel state. If the instantaneous channel capacity is greater than the given transmission rate, the system can successfully transmit information but it does not exploit the entire available channel capacity. We focus on this extra channel capacity to transmit other information based on a joint network-channel coding in order to obtain higher diversity and coding gains. This paper provides the basic concept of the transmit diversity with the joint network-channel coding and investigates its performances in terms of outage probability, additional decoding delay and complexity, and frame-error rate (FER).
Masashi FUSHIKI Noriaki MIYAZAKI Xiaoqiu WANG Satoshi KONISHI
In order to support the increasing amount of mobile data traffic, Third Generation Partnership Project (3GPP) is actively discusses cell range expansion (CRE) and time domain multiplexing – inter-cell interference coordination (TDM-ICIC). They have shown to be attractive techniques for heterogeneous network (HetNet) deployment where pico base stations (BSs) overlay macro BSs. There are two control schemes of the TDM-ICIC. One, named ZP-scheme, stops radio resource assignments for data traffic in predetermined radio resources in the time domain (subframes). The other, named RP-scheme, maintains the resource assignment whereas it reduces the transmission power at macro BSs at predetermined subframes. In this paper, we clarify the effective ranges of both ZP-scheme and RP-scheme by conducting the system level simulations. Moreover, the appropriate power reduction value at predetermined subframes is also clarified from the difference in the effective range of various power reduction values. The comprehensive evaluation results show that both ZP-scheme and RP-scheme are not effective when the CRE bias value is 0 dB or less. If the CRE bias value is larger than 0 dB, they are effective when the ratio of predetermined subframes in all subframes is set to appropriate values. These values depend on the CRE bias value and power reduction in the predetermined subframes. The effective range is expanded when the power reduction in the predetermined subframes changes with the CRE bias value. Therefore, the effective range of RP-scheme is larger than that of ZP-scheme by setting an appropriate power reduction in the predetermined subframes.
Wenting CHANG Jintao WANG Bo AI
A scheme that modulates the training sequence is proposed to support two-layer data streams in the time domain synchronous orthogonal frequency division multiplex (TDS-OFDM) systems. A theoretical analysis and computer simulation show that the proposed scheme works well and that the two layer data streams are compatible with each other.
Mirrored serpentine microstrip lines are proposed for a parallel high speed digital signaling to reduce the peak far-end crosstalk (FEXT) voltage. Mirrored serpentine microstrip lines consist of two serpentine microstrip lines, each one equal to a conventional normal serpentine microstrip line. However, one serpentine microstrip line of the mirrored serpentine microstrip lines is flipped in the length direction, and thus, two serpentine microstrip lines face each other. Time domain reflectometry measurements show that the peak FEXT voltage of the mirrored serpentine microstrip lines is reduced by 56.4% of that of conventional microstrip lines and 30.0% of that of conventional normal serpentine microstrip lines.
Zhaocheng WANG Jintao WANG Linglong DAI
This paper proposes a novel scheme to reduce the complexity of existing transmit diversity solutions to time domain synchronous OFDM (TDS-OFDM). The space shifted constant amplitude zero autocorrelation (CAZAC) sequence based preamble is proposed for channel estimation. Two flexible frame structures are proposed for adaptive system design as well as cyclicity reconstruction of the received inverse discrete Fourier transform (IDFT) block. With regard to channel estimation and cyclicity reconstruction, the complexity of the proposed scheme is only around 7.20% of that of the conventional solutions. Simulation results demonstrate that better bit error rate (BER) performance can be achieved over doubly selective channels.
Satoshi NAKANOBU Yasunori IWANAMI Eiji OKAMOTO
In this paper, we investigate two receiver structures for spatially multiplexed transmission on MIMO frequency selective fading channels. Those receivers compensate the IAI (Inter-Antenna Interference) and ISI (Inter-Symbol Interference) in the time domain. We first propose the MIMO sequential equalizer in which the block of several receives symbols is processed symbol by symbol by MLD (Maximum Likelihood Detection). Next we investigate the MIMO MLSE (Maximum Likelihood Sequence Estimation) receiver in which the terminated block trellis is decoded by the Viterbi algorithm. The bit error rates of two time domain receivers are examined through computer simulations and we also compare their BER characteristics to those of the conventional MIMO SC-FDE.