The search functionality is under construction.

Keyword Search Result

[Keyword] transmission(944hit)

1-20hit(944hit)

  • Real-Time Monitoring Systems That Provide M2M Communication between Machines Open Access

    Ya ZHONG  

     
    PAPER-Language, Thought, Knowledge and Intelligence

      Pubricized:
    2023/10/17
      Vol:
    E107-A No:7
      Page(s):
    1019-1026

    Artificial intelligence and the introduction of Internet of Things technologies have benefited from technological advances and new automated computer system technologies. Eventually, it is now possible to integrate them into a single offline industrial system. This is accomplished through machine-to-machine communication, which eliminates the human factor. The purpose of this article is to examine security systems for machine-to-machine communication systems that rely on identification and authentication algorithms for real-time monitoring. The article investigates security methods for quickly resolving data processing issues by using the Security operations Center’s main machine to identify and authenticate devices from 19 different machines. The results indicate that when machines are running offline and performing various tasks, they can be exposed to data leaks and malware attacks by both the individual machine and the system as a whole. The study looks at the operation of 19 computers, 7 of which were subjected to data leakage and malware attacks. AnyLogic software is used to create visual representations of the results using wireless networks and algorithms based on previously processed methods. The W76S is used as a protective element within intelligent sensors due to its built-in memory protection. For 4 machines, the data leakage time with malware attacks was 70 s. For 10 machines, the duration was 150 s with 3 attacks. Machine 15 had the longest attack duration, lasting 190 s and involving 6 malware attacks, while machine 19 had the shortest attack duration, lasting 200 s and involving 7 malware attacks. The highest numbers indicated that attempting to hack a system increased the risk of damaging a device, potentially resulting in the entire system with connected devices failing. Thus, illegal attacks by attackers using malware may be identified over time, and data processing effects can be prevented by intelligent control. The results reveal that applying identification and authentication methods using a protocol increases cyber-physical system security while also allowing real-time monitoring of offline system security.

  • Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks Open Access

    Rongqi ZHANG  Chunyun PAN  Yafei WANG  Yuanyuan YAO  Xuehua LI  

     
    PAPER-Network

      Vol:
    E107-B No:6
      Page(s):
    446-457

    With maturation of 5G technology in recent years, multimedia services such as live video streaming and online games on the Internet have flourished. These multimedia services frequently require low latency, which pose a significant challenge to compute the high latency requirements multimedia tasks. Mobile edge computing (MEC), is considered a key technology solution to address the above challenges. It offloads computation-intensive tasks to edge servers by sinking mobile nodes, which reduces task execution latency and relieves computing pressure on multimedia devices. In order to use MEC paradigm reasonably and efficiently, resource allocation has become a new challenge. In this paper, we focus on the multimedia tasks which need to be uploaded and processed in the network. We set the optimization problem with the goal of minimizing the latency and energy consumption required to perform tasks in multimedia devices. To solve the complex and non-convex problem, we formulate the optimization problem as a distributed deep reinforcement learning (DRL) problem and propose a federated Dueling deep Q-network (DDQN) based multimedia task offloading and resource allocation algorithm (FDRL-DDQN). In the algorithm, DRL is trained on the local device, while federated learning (FL) is responsible for aggregating and updating the parameters from the trained local models. Further, in order to solve the not identically and independently distributed (non-IID) data problem of multimedia devices, we develop a method for selecting participating federated devices. The simulation results show that the FDRL-DDQN algorithm can reduce the total cost by 31.3% compared to the DQN algorithm when the task data is 1000 kbit, and the maximum reduction can be 35.3% compared to the traditional baseline algorithm.

  • Analysis of Optical Power Splitter with Resonator Structure Constructed by Two-Dimensional MDM Plasmonic Waveguide Open Access

    Yoshihiro NAKA  Masahiko NISHIMOTO  Mitsuhiro YOKOTA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2023/12/07
      Vol:
    E107-C No:5
      Page(s):
    141-145

    An efficient optical power splitter constructed by a metal-dielectric-metal plasmonic waveguide with a resonator structure has been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator structure consists of input/output waveguides and a narrow waveguide with a T-junction. The power splitter with the resonator structure is expressed by an equivalent transmission-line circuit. We can find that the transmittance and reflectance calculated by the FD-TD method and the equivalent circuit are matched when the difference in width between the input/output waveguides and the narrow waveguide is small. It is also shown that the transmission wavelength can be adjusted by changing the narrow waveguide lengths that satisfy the impedance matching condition in the equivalent circuit.

  • Traffic Reduction for Speculative Video Transmission in Cloud Gaming Systems Open Access

    Takumasa ISHIOKA  Tatsuya FUKUI  Toshihito FUJIWARA  Satoshi NARIKAWA  Takuya FUJIHASHI  Shunsuke SARUWATARI  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E107-B No:5
      Page(s):
    408-418

    Cloud gaming systems allow users to play games that require high-performance computational capability on their mobile devices at any location. However, playing games through cloud gaming systems increases the Round-Trip Time (RTT) due to increased network delay. To simulate a local gaming experience for cloud users, we must minimize RTTs, which include network delays. The speculative video transmission pre-generates and encodes video frames corresponding to all possible user inputs and sends them to the user before the user’s input. The speculative video transmission mitigates the network, whereas a simple solution significantly increases the video traffic. This paper proposes tile-wise delta detection for traffic reduction of speculative video transmission. More specifically, the proposed method determines a reference video frame from the generated video frames and divides the reference video frame into multiple tiles. We calculate the similarity between each tile of the reference video frame and other video frames based on a hash function. Based on calculated similarity, we determine redundant tiles and do not transmit them to reduce traffic volume in minimal processing time without implementing a high compression ratio video compression technique. Evaluations using commercial games showed that the proposed method reduced 40-50% in traffic volume when the SSIM index was around 0.98 in certain genres, compared with the speculative video transmission method. Furthermore, to evaluate the feasibility of the proposed method, we investigated the effectiveness of network delay reduction with existing computational capability and the requirements in the future. As a result, we found that the proposed scheme may mitigate network delay by one to two frames, even with existing computational capability under limited conditions.

  • RC-Oscillator-Based Battery-Less Wireless Sensing System Using RF Resonant Electromagnetic Coupling Open Access

    Zixuan LI  Sangyeop LEE  Noboru ISHIHARA  Hiroyuki ITO  

     
    PAPER

      Pubricized:
    2023/11/24
      Vol:
    E107-A No:5
      Page(s):
    727-740

    A wireless sensor terminal module of 5cc size (2.5 cm × 2.5 cm × 0.8 cm) that does not require a battery is proposed by integrating three kinds of circuit technologies. (i) a low-power sensor interface: an FM modulation type CMOS sensor interface circuit that can operate with a typical power consumption of 24.5 μW was fabricated by the 0.7-μm CMOS process technology. (ii) power supply to the sensor interface circuit: a wireless power transmission characteristic to a small-sized PCB spiral coil antenna was clarified and applied to the module. (iii) wireless sensing from the module: backscatter communication technology that modulates the signal from the base terminal equipment with sensor information and reflects it, which is used for the low-power sensing operation. The module fabricated includes a rectifier circuit with the PCB spiral coil antenna that receives wireless power transmitted from base terminal equipment by electromagnetic resonance coupling and converts it into DC power and a sensor interface circuit that operates using the power. The interface circuit modulates the received signal with the sensor information and reflects it back to the base terminal. The module could achieve 100 mm communication distance when 0.4 mW power is feeding to the sensor terminal.

  • Design of a Capacitive Coupler for Underwater Wireless Power Transfer Focused on the Landing Direction of a Drone

    Yasumasa NAKA  Masaya TAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    66-75

    This paper presents the design of a capacitive coupler for underwater wireless power transfer focused on the landing direction of a drone. The main design feature is the relative position of power feeding/receiving points on the coupler electrodes, which depends on the landing direction of the drone. First, the maximum power transfer efficiencies of coupled lines with different feeding positions are derived in a uniform dielectric environment, such as that realized underwater. As a result, these are formulated by the coupling coefficient of the capacitive coupler, the unloaded qualify factor of dielectrics, and hyperbolic functions with complex propagation constants. The hyperbolic functions vary depending on the relative positions and whether these are identical or opposite couplers, and the efficiencies of each coupler depend on the type of water, such as seawater and tap water. The design method was demonstrated and achieved the highest efficiencies of 95.2%, 91.5%, and 85.3% in tap water at transfer distances of 20, 50, and 100 mm, respectively.

  • Capacitive Wireless Power Transfer System with Misalignment Tolerance in Flowing Freshwater Environments

    Yasumasa NAKA  Akihiko ISHIWATA  Masaya TAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/08/01
      Vol:
    E107-C No:2
      Page(s):
    47-56

    The misalignment of a coupler is a significant issue for capacitive wireless power transfer (WPT). This paper presents a capacitive WPT system specifically designed for underwater drones operating in flowing freshwater environments. The primary design features include a capacitive coupler with an opposite relative position between feeding and receiving points on the coupler electrode, two phase compensation circuits, and a load-independent inverter. A stable and energy-efficient power transmission is achieved by maintaining a 90° phase difference on the coupler electrode in dielectrics with a large unloaded quality factor (Q factor), such as in freshwater. Although a 622-mm coupler electrode is required at 13.56MHz, the phase compensation circuits can reduce to 250mm as one example, which is mountable to small underwater drones. Furthermore, the electricity waste is automatically reduced using the constant-current (CC) output inverter in the event of misalignment where efficiency drops occur. Finally, their functions are simulated and demonstrated at various receiver positions and transfer distances in tap water.

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • Bandwidth Abundant Optical Networking Enabled by Spatially-Jointed and Multi-Band Flexible Waveband Routing Open Access

    Hiroshi HASEGAWA  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-B No:1
      Page(s):
    16-26

    The novel optical path routing architecture named flexible waveband routing networks is reviewed in this paper. The nodes adopt a two-stage path routing scheme where wavelength selective switches (WSSs) bundle optical paths and form a small number of path groups and then optical switches without wavelength selectivity route these groups to desired outputs. Substantial hardware scale reduction can be achieved as the scheme enables us to use small scale WSSs, and even more, share a WSS by multiple input cores/fibers through the use of spatially-joint-switching. Furthermore, path groups distributed over multiple bands can be switched by these optical switches and thus the adaptation to multi-band transmission is straightforward. Network-wide numerical simulations and transmission experiments that assume multi-band transmission demonstrate the validity of flexible waveband routing.

  • Transmission Performance Evaluation of Local 5G Downlink Data Channel in SU-MIMO System under Outdoor Environments

    Hiroki URASAWA  Hayato SOYA  Kazuhiro YAMAGUCHI  Hideaki MATSUE  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    63-73

    We evaluated the transmission performance, including received power and transmission throughput characteristics, in 4×4 single-user multiple-input multiple-output (SU-MIMO) transmission for synchronous time division duplex (TDD) and downlink data channels in comparison with single-input single-output (SISO) transmission in an environment where a local 5G wireless base station was installed on the roof of a research building at our university. Accordingly, for the received power characteristics, the difference between the simulation value, which was based on the ray tracing method, and the experimental value at 32 points in the area was within a maximum difference of approximately 10 dB, and sufficient compliance was obtained. Regarding the transmission throughput versus received power characteristics, after showing a simulation method for evaluating throughput characteristics in MIMO, we compared the results with experimental results. The cumulative distribution function (CDF) of the transmission throughput shows that, at a CDF of 50%, in SISO transmission, the simulated value is approximately 115Mbps, and the experimental value is 105Mbps, within a difference of approximately 10Mbps. By contrast, in MIMO transmission, the simulation value is 380Mbps, and the experimental value is approximately 420Mbps, which is a difference of approximately 40Mbps. It was shown that the received power and transmission throughput characteristics can be predicted with sufficient accuracy by obtaining the delay profile and the system model at each reception point using the both ray tracing and MIMO simulation methods in actual environments.

  • Adaptive K-Repetition Transmission with Site Diversity Reception for Energy-Efficient Grant-Free URLLC in 5G NR

    Arif DATAESATU  Kosuke SANADA  Hiroyuki HATANO  Kazuo MORI  Pisit BOONSRIMUANG  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    74-84

    The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.

  • Antennas Measurement for Millimeter Wave 5G Wireless Applications Using Radio Over Fiber Technologies Open Access

    Satoru KUROKAWA  Michitaka AMEYA  Yui OTAGAKI  Hiroshi MURATA  Masatoshi ONIZAWA  Masahiro SATO  Masanobu HIROSE  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1313-1321

    We have developed an all-optical fiber link antenna measurement system for a millimeter wave 5th generation mobile communication frequency band around 28 GHz. Our developed system consists of an optical fiber link an electrical signal transmission system, an antenna-coupled-electrode electric-field (EO) sensor system for 28GHz-band as an electrical signal receiving system, and a 6-axis vertically articulated robot with an arm length of 1m. Our developed optical fiber link electrical signal transmission system can transmit the electrical signal of more than 40GHz with more than -30dBm output level. Our developed EO sensor can receive the electrical signal from 27GHz to 30GHz. In addition, we have estimated a far field antenna factor of the EO sensor system for the 28GHz-band using an amplitude center modified antenna factor estimation equation. The estimated far field antenna factor of the sensor system is 83.2dB/m at 28GHz.

  • Shift Quality Classifier Using Deep Neural Networks on Small Data with Dropout and Semi-Supervised Learning

    Takefumi KAWAKAMI  Takanori IDE  Kunihito HOKI  Masakazu MURAMATSU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2023/09/05
      Vol:
    E106-D No:12
      Page(s):
    2078-2084

    In this paper, we apply two methods in machine learning, dropout and semi-supervised learning, to a recently proposed method called CSQ-SDL which uses deep neural networks for evaluating shift quality from time-series measurement data. When developing a new Automatic Transmission (AT), calibration takes place where many parameters of the AT are adjusted to realize pleasant driving experience in all situations that occur on all roads around the world. Calibration requires an expert to visually assess the shift quality from the time-series measurement data of the experiments each time the parameters are changed, which is iterative and time-consuming. The CSQ-SDL was developed to shorten time consumed by the visual assessment, and its effectiveness depends on acquiring a sufficient number of data points. In practice, however, data amounts are often insufficient. The methods proposed here can handle such cases. For the cases wherein only a small number of labeled data points is available, we propose a method that uses dropout. For those cases wherein the number of labeled data points is small but the number of unlabeled data is sufficient, we propose a method that uses semi-supervised learning. Experiments show that while the former gives moderate improvement, the latter offers a significant performance improvement.

  • Energy-Efficient One-to-One and Many-to-One Concurrent Transmission for Wireless Sensor Networks

    SenSong HE  Ying QIU  

     
    LETTER-Information Network

      Pubricized:
    2023/09/19
      Vol:
    E106-D No:12
      Page(s):
    2107-2111

    Recent studies have shown that concurrent transmission with precise time synchronization enables reliable and efficient flooding for wireless networks. However, most of them require all nodes in the network to forward packets a fixed number of times to reach the destination, which leads to unnecessary energy consumption in both one-to-one and many-to-one communication scenarios. In this letter, we propose G1M address this issue by reducing redundant packet forwarding in concurrent transmissions. The evaluation of G1M shows that compared with LWB, the average energy consumption of one-to-one and many-to-one transmission is reduced by 37.89% and 25%, respectively.

  • Demodulation Performance Comparison of High-Speed Coherent Nyquist Pulse Signal with Analog and Digital Demultiplexing Schemes

    Masato YOSHIDA  Kosuke KIMURA  Toshihiko HIROOKA  Keisuke KASAI  Masataka NAKAZAWA  

     
    PAPER

      Pubricized:
    2023/05/11
      Vol:
    E106-B No:11
      Page(s):
    1059-1064

    We compare the demodulation performance of an analog OTDM demultiplexing scheme and digitized OTDM demultiplexing with an ultrahigh-speed digital signal processor in a single-channel OTDM coherent Nyquist pulse transmission. We evaluated the demodulation performance for 40, 80, and 160Gbaud OTDM signals with a baseline rate of 10Gbaud. As a result, we clarified that the analog scheme performs significantly better since the bandwidth for handling the demultiplexed signal is as narrow as 10GHz regardless of the symbol rate. This enables us to use a low-speed A/D converter (ADC) with a large effective number of bits (ENOB). On the other hand, in the digital scheme, the higher the symbol rate becomes, the more bandwidth the receiver requires. Therefore, it is necessary to use an ultrahigh-speed ADC with a low ENOB for a 160Gbaud signal. We measured the ENOB of the ultrahigh-speed ADC used in the digital scheme and showed that the measured ENOB was approximately 1.5 bits lower than that of the low-speed ADC used in the analog scheme. This 1.5-bit decrease causes a large degradation in the demodulation performance obtained with the digital demultiplexing scheme.

  • Real-Time Detection of Fiber Bending and/or Optical Filter Shift by Machine-Learning of Tapped Raw Digital Coherent Optical Signals

    Yuichiro NISHIKAWA  Shota NISHIJIMA  Akira HIRANO  

     
    PAPER

      Pubricized:
    2023/05/19
      Vol:
    E106-B No:11
      Page(s):
    1065-1073

    We have proposed autonomous network diagnosis platform for operation of future large capacity and virtualized network, including 5G and beyond 5G services. As for the one candidate of information collection and analyzing function blocks in the platform, we proposed novel optical sensing techniques that utilized tapped raw signal data acquired from digital coherent optical receivers. The raw signal data is captured before various digital signal processing for demodulation. Therefore, it contains various waveform deformation and/or noise as it experiences through transmission fibers. In this paper, we examined to detect two possible failures in transmission lines including fiber bending and optical filter shift by analyzing the above-mentioned raw signal data with the help of machine learning. For the purpose, we have implemented Docker container applications in WhiteBox Cassini to acquire real-time raw signal data. We generated CNN model for the detections in off-line processing and used them for real-time detections. We have confirmed successful detection of optical fiber bend and/or optical filter shift in real-time with high accuracy. Also, we evaluated their tolerance against ASE noise and invented novel approach to improve detection accuracy. In addition to that, we succeeded to detect them even in the situation of simultaneous occurrence of those failures.

  • NOMA-Based Highly-Efficient Low-Latency HARQ with Inter-Base Station Cooperation for URLLC Open Access

    Ryota KOBAYASHI  Takanori HARA  Yasuaki YUDA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1219-1227

    This paper extends our previously reported non-orthogonal multiple access (NOMA)-based highly-efficient and low-latency hybrid automatic repeat request (HARQ) method for ultra-reliable low latency communications (URLLC) to the case with inter-base station cooperation. In the proposed method, delay-sensitive URLLC packets are preferentially multiplexed with best-effort enhanced mobile broadband (eMBB) packets in the same channel using superposition coding to reduce the transmission latency of the URLLC packet while alleviating the throughput loss in eMBB. Although data transmission to the URLLC terminal is conducted by multiple base stations based on inter-base station cooperation, the proposed method allocates radio resources to URLLC terminals which include scheduling (bandwidth allocation) and power allocation at each base station independently to achieve the short transmission latency required for URLLC. To avoid excessive radio resource assignment to URLLC terminals due to independent resource assignment at each base station, which may result in throughput degradation in eMBB terminals, we employ an adaptive path-loss-dependent weighting approach in the scheduling-metric calculation. This achieves appropriate radio resource assignment to URLLC terminals while reducing the packet error rate (PER) and transmission delay time thanks to the inter-base station cooperation. We show that the proposed method significantly improves the overall performance of the system that provides simultaneous eMBB and URLLC services.

  • A 28 GHz Band Compact LTCC Filtering Antenna with Extracted-Pole Unit for Dual Polarization Open Access

    Kaoru SUDO  Ryo MIKASE  Yoshinori TAGUCHI  Koichi TAKIZAWA  Yosuke SATO  Kazushige SATO  Hisao HAYAFUJI  Masataka OHIRA  

     
    INVITED PAPER

      Pubricized:
    2023/05/18
      Vol:
    E106-C No:11
      Page(s):
    635-642

    This paper proposes a dual-polarized filtering antenna with extracted-pole unit (EPU) using LTCC substrate. The EPU realizes the high skirt characteristic of the bandpass filter with transmission zeros (TZs) located near the passband without cross coupling. The filtering antenna with EPU is designed and fabricated in 28GHz band for 5G Band-n257 (26.5-29.5GHz). The measured S11 is less than -10.6dB in Band-n257, and the isolation between two ports for dual polarization is greater than 20.0dB. The measured peak antenna gain is 4.0dBi at 28.8GHz and the gain is larger than 2.5dBi in Band-n257. The frequency characteristics of the measured antenna gain shows the high skirt characteristic out of band, which are in good agreement with electromagnetic (EM)-simulated results.

  • A Study on Evaluation Method for Beam Profile of Phased Array by Using Two-Dimensional Measurement Equipment Open Access

    Kazuki YUKAWA  Takayuki MATSUMURO  Toshio ISHIZAKI  Yohei ISHIKAWA  

     
    INVITED PAPER

      Pubricized:
    2023/05/31
      Vol:
    E106-C No:11
      Page(s):
    643-650

    Recently, “Both-Side Retrodirective System” was proposed, as a beam convergence technique, for microwave high power transmission. To demonstrate the effectiveness of the both-side retrodirective system by experiment, the authors propose a 2-dimensional measurement equipment. Propagation in the parallel plate waveguide was analogized based on free-space propagation, and the theory and characteristics were clarified by simulation. The electric field distribution in the waveguide was measured by electric probe with the proposed equipment. Two types of measurement equipment were developed. One is a 4-element experiment system, which is a small-scale device for principle verification. The other is a 16-element measurement equipment, which is intended to evaluate beam convergence of a both-side retrodirective system in the next step. The measured results were compared with simulation results. As a result, it was confirmed that the beam formed in the waveguide was successfully measured. Thus, the effectiveness of 2-dimensional measurement equipment for evaluation of beam convergence was shown.

  • A Design Method of Transmission-Type Metasurfaces Using Circuit Synthesis Theory of Microwave Bandpass Filters Open Access

    Hiromichi YOSHIKAWA  Nobuki HIRAMATSU  Masamichi YONEHARA  Hisamatsu NAKANO  

     
    INVITED PAPER

      Pubricized:
    2023/05/18
      Vol:
    E106-C No:11
      Page(s):
    651-660

    In this paper, we applied the circuit synthesis theory of filters to the design of transmission-type metasurface cells and arbitrarily designed the amplitude and phase of the transmission and reflection by adjusting the resonant frequency and coupling coefficient. In addition, we successfully designed the phase of the unit cell by using the frequency conversion of filter theory. Moreover, we designed a refractive transmission-type metasurface plate with a novel cell structure that reacts to both polarizations. The prototype operated at the desired refraction angle, confirming the design theory.

1-20hit(944hit)