The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.73

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E92-B No.12  (Publication Date:2009/12/01)

    Special Section on Dynamic Spectrum Access
  • FOREWORD Open Access

    Jun-ichi TAKADA  

     
    FOREWORD

      Page(s):
    3571-3571
  • Application of Fuzzy Logic to Cognitive Radio Systems Open Access

    Marja MATINMIKKO  Tapio RAUMA  Miia MUSTONEN  Ilkka HARJULA  Heli SARVANKO  Aarne MAMMELA  

     
    INVITED PAPER

      Page(s):
    3572-3580

    This paper reviews applications of fuzzy logic to telecommunications and proposes a novel fuzzy combining scheme for cooperative spectrum sensing in cognitive radio systems. A summary of previous applications of fuzzy logic to telecommunications is given outlining also potential applications of fuzzy logic in future cognitive radio systems. In complex and dynamic operational environments, future cognitive radio systems will need sophisticated decision making and environment awareness techniques that are capable of handling multidimensional, conflicting and usually non-predictable decision making problems where optimal solutions can not be necessarily found. The results indicate that fuzzy logic can be used in cooperative spectrum sensing to provide additional flexibility to existing combining methods.

  • Dynamic Spectrum Access to the Combined Resource of Commercial and Public Safety Bands Based on a WCDMA Shared Network

    Hyoungsuk JEON  Sooyeol IM  Youmin KIM  Seunghee KIM  Jinup KIM  Hyuckjae LEE  

     
    LETTER-Spectrum Allocation

      Page(s):
    3581-3585

    The public safety spectrum is generally under-utilized due to the unique traffic characteristics of bursty and mission critical. This letter considers the application of dynamic spectrum access (DSA) to the combined spectrum of public safety (PS) and commercial (CMR) users in a common shared network that can provide both PS and CMR services. Our scenario includes the 700 MHz Public/Private Partnership which was recently issued by the Federal Communications Commission. We first propose an efficient DSA mechanism to coordinate the combined spectrum, and then establish a call admission control that reflects the proposed DSA in a wideband code division multiple access based network. The essentials of our proposed DSA are opportunistic access to the public safety spectrum and priority access to the commercial spectrum. Simulation results show that these schemes are well harmonized in various network environments.

  • Dynamic Resource Allocation in OFDMA Systems with Adjustable QoS

    Bin DA  Chi-Chung KO  

     
    LETTER-Spectrum Allocation

      Page(s):
    3586-3588

    Traditional algorithms for dynamic OFDMA resource allocation have relatively deterministic system capacity and user fairness. Thus, in this letter, an efficient scheme is proposed to flexibly adjust quality-of-service for users, which is achieved by appropriately setting minimum data-rate of each user.

  • A Novel Dynamic Channel Access Scheme Using Overlap FFT Filter-Bank for Cognitive Radio

    Motohiro TANABE  Masahiro UMEHIRA  Koichi ISHIHARA  Yasushi TAKATORI  

     
    PAPER-Spectrum Allocation

      Page(s):
    3589-3596

    An OFDMA based channel access scheme is proposed for dynamic spectrum access to utilize frequency spectrum efficiently. Though the OFDMA based scheme is flexible enough to change the bandwidth and channel of the transmitted signals, the OFDMA signal has large PAPR (Peak to Average Power Ratio). In addition, if the OFDMA receiver does not use a filter to extract sub-carriers before FFT (Fast Fourier Transform) processing, the designated sub-carriers suffer large interference from the adjacent channel signals in the FFT processing on the receiving side. To solve the problems such as PAPR and adjacent channel interference encountered in the OFDMA based scheme, this paper proposes a novel dynamic channel access scheme using overlap FFT filter-bank based on single carrier modulation. It also shows performance evaluation results of the proposed scheme by computer simulation.

  • Performance Analysis of Control Signal Transmission Technique for Cognitive Radios in Dynamic Spectrum Access Networks

    Ren SAKATA  Tazuko TOMIOKA  Takahiro KOBAYASHI  

     
    PAPER-Spectrum Allocation

      Page(s):
    3597-3605

    When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.

  • Spectrum Sensing Architecture and Use Case Study: Distributed Sensing over Rayleigh Fading Channels

    Chen SUN  Yohannes D. ALEMSEGED  Ha Nguyen TRAN  Hiroshi HARADA  

     
    PAPER-Spectrum Sensing

      Page(s):
    3606-3615

    To realize dynamic spectrum access (DSA), spectrum sensing is performed to detect the presence or absence of primary users (PUs). This paper proposes a sensing architecture. This architecture enables use cases such as DSA with PU detection using a single spectrum sensor and DSA with distributed sensing, such as cooperative sensing, collaborative sensing, and selective sensing. In this paper we focus on distributed sensing. These sensing schemes employ distributed spectrum sensors (DSSs) where each sensor uses energy detection (ED) in Rayleigh fading environment. To theoretically analyze the performance of the three sensing schemes, a closed-form expression for the probability of detection by ED with selective combining (SC) in Rayleigh fading environment is derived. Applying this expression to the PU detection problem, we obtain analytical models of the three sensing schemes. Analysis shows that at 5-dB signal-to-noise ratio (SNR) and with a false alarm rate of 0.004, the probability of detection is increased from 0.02 to 0.3 and 0.4, respectively, by cooperative sensing and collaborative sensing schemes using using three DSSs. Results also show that the selected sensing scheme matches the performance of the collaborative sensing scheme. Moreover, it provides a low false alarm rate.

  • Robust Spectrum Sensing Algorithms for Cognitive Radio Application by Using Distributed Sensors

    Yohannes D. ALEMSEGED  Chen SUN  Ha Nguyen TRAN  Hiroshi HARADA  

     
    PAPER-Spectrum Sensing

      Page(s):
    3616-3624

    Due to the advancement of software radio and RF technology, cognitive radio(CR) has become an enabling technology to realize dynamic spectrum access through its spectrum sensing and reconfiguration capability. Robust and reliable spectrum sensing is a key factor to discover spectrum opportunity. Single cognitive radios often fail to provide such reliable information because of their inherent sensitivity limitation. Primary signals that are subject to detection by cognitive radios may become weak due to several factors such as fading and shadowing. One approach to overcome this problem is to perform spectrum sensing by using multiple CRs or multiple spectrum sensors. This approach is known as distributed sensing because sensing is carried out through cooperation of spatially distributed sensors. In distributed sensing, sensors should perform spectrum sensing and forward the result to a destination where data fusion is carried out. Depending on the channel conditions between sensors (sensor-to-sensor channel) and between the sensor and the radio (user-channel), we explore different spectrum sensing algorithms where sensors provide the sensing information either cooperatively or independently. Moreover we investigate sensing schemes based on soft information combining (SC), hard information combining (HC). Finally we propose a two-stage detection scheme that uses both SC and HC. The newly proposed detection scheme is shown to provide improved performance compared to sensing based on either HC or SC alone. Computer simulation results are provided to illustrate the performances of the different sensing algorithms.

  • A Novel Method for Information Gathering by Using Orthogonal Narrowband Signal for Cooperative Sensing in Cognitive Radio

    Mai OHTA  Takeo FUJII  Kazushi MURAOKA  Masayuki ARIYOSHI  

     
    PAPER-Spectrum Sensing

      Page(s):
    3625-3634

    In this paper, we propose a novel method for gathering sensing information by using an orthogonal narrowband signal for cooperative sensing in cognitive radio. It is desirable to improve the spectrum sensing performance by countering the locality effect of a wireless channel; cooperative sensing by using multiple inputs of sensing information from the surrounding sensing nodes has attracted attention. Cooperative sensing requires that sensing information be gathered at the master node for determining the existence of a primary signal. If the used information gathering method leads to redundancies, the total capacity of the secondary networks is not improved. In this paper, we propose a novel method for gathering sensing information that maps the sensing information to the orthogonal narrowband signal to achieve simultaneous sensing information gathering at the master node. In this method, the sensing information is mapped to an orthogonal subcarrier signal of an orthogonal frequency division multiplexing (OFDM) structure to reduce the frequency resource required for sensing information gathering. The orthogonal signals are transmitted simultaneously from multiple sensing nodes. This paper evaluates the performance of the proposed information gathering method and confirms its effectiveness.

  • A Robust Spectrum Sensing Method Based on Maximum Cyclic Autocorrelation Selection for Dynamic Spectrum Access

    Kazushi MURAOKA  Masayuki ARIYOSHI  Takeo FUJII  

     
    PAPER-Spectrum Sensing

      Page(s):
    3635-3643

    Spectrum sensing is an important function for dynamic spectrum access (DSA) type cognitive radio systems to detect opportunities for sharing the spectrum with a primary system. The key requirements for spectrum sensing are stability in controlling the probability of false alarm as well as detection performance of the primary signals. However, false alarms can be triggered by noise uncertainty at the secondary devices or unknown interference signals from other secondary systems in realistic radio environments. This paper proposes a robust spectrum sensing method against such uncertainties; it is a kind of cyclostationary feature detection (CFD) approaches. Our proposed method, referred to as maximum cyclic autocorrelation selection (MCAS), compares the peak and non-peak values of the cyclic autocorrelation function (CAF) to detect primary signals, where the non-peak value is the CAF value calculated at cyclic frequencies between the peaks. In MCAS, the desired probability of false alarm can be obtained by setting the number of the non-peak values. In addition, the multiple peak values are combined in MCAS to obtain noise reduction effect and coherent combining gain. Through computer simulations, we show that MCAS can control the probability of false alarm under the condition of noise uncertainty and interference. Furthermore, our method achieves better performance with much less computational complexity in comparison to conventional CFD methods.

  • A Robust Secure Cooperative Spectrum Sensing Scheme Based on Evidence Theory and Robust Statistics in Cognitive Radio

    Nhan NGUYEN-THANH  Insoo KOO  

     
    PAPER-Spectrum Sensing

      Page(s):
    3644-3652

    Spectrum sensing is a key technology within Cognitive Radio (CR) systems. Cooperative spectrum sensing using a distributed model provides improved detection for the primary user, which opens the CR system to a new security threat. This threat is the decrease of the cooperative sensing performance due to the spectrum sensing data falsification which is generated from malicious users. Our proposed scheme, based on robust statistics, utilizes only available past sensing nodes' received power data for estimating the distribution parameters of the primary signal presence and absence hypotheses. These estimated parameters are used to perform the Dempster-Shafer theory of evidence data fusion which causes the elimination of malicious users. Furthermore, in order to enhance performance, a node's reliability weight is supplemented along with the data fusion scheme. Simulation results indicate that our proposed scheme can provide a powerful capability in eliminating malicious users as well as a high gain of data fusion under various cases of channel condition.

  • A Sidelobe Suppression Technique by Regenerating Null Signals in OFDM-Based Cognitive Radios

    Tomoya TANDAI  Takahiro KOBAYASHI  

     
    PAPER-Spectrum Sensing

      Page(s):
    3653-3664

    In this paper, a sidelobe suppression technique for orthogonal frequency division multiplexing (OFDM)-based cognitive radios (CR) is proposed. In the OFDM-based CR systems, after the CR terminal executes spectrum sensing, it transmits a CR packet by activating the subcarriers in the frequency bands where no signals are detected (hereinafter, these subcarriers are called "active subcarrier") and by disabling (nulling) the subcarriers in the frequency bands where the signals are detected. In this situation, a problem arises in that the signals that leak from the active subcarriers to the null subcarriers may interfere with the primary systems. Therefore, this signal leakage has to be minimized. In many OFDM-based wireless communication systems, one packet or frame consists of multiple OFDM symbols and the discontinuity between the consecutive OFDM symbols causes the signal leakage to the null subcarriers. In the proposed method, signal leakage to the null subcarriers is suppressed by regenerating null subcarriers in the frequency-domain signal of the whole packet as follows. One CR packet consisting of multiple OFDM symbols having null subcarriers and guard interval (GI) is buffered and oversampled, and then the oversampled signal is Fourier transformed at once and consequently the frequency-domain signal of the packet is obtained. The null subcarriers in the frequency-domain signal are zeroed again, and then the signal is inverse Fourier transformed and transmitted. The proposed method significantly suppresses the signal leakage. The spectral power density, the peak-to-average power ratio (PAPR) and the packet error rate (PER) performances of the proposed method are evaluated by computer simulations and the effectiveness of the proposed method is shown.

  • 2D MIMO Network Coding with Inter-Route Interference Cancellation

    Gia Khanh TRAN  Kei SAKAGUCHI  Fumie ONO  Kiyomichi ARAKI  

     
    PAPER-MIMO Mesh Network

      Page(s):
    3665-3675

    Infrastructure wireless mesh network has been attracting much attention due to the wide range of its application such as public wireless access, sensor network, etc. In recent years, researchers have shown that significant network throughput gain can be achieved by employing network coding in a wireless environment. For further improvement of network throughput in one dimensional (1D) topology, Ono et al. proposed to use multiple antenna technique combined with network coding. In this paper, being inspired by MIMO network coding in 1D topology, the authors establish a novel MIMO network coding algorithm for a 2D topology consisting of two crossing routes. In this algorithm, multiple network coded flows are spatially multiplexed. Owing to the efficient usage of radio resource of network coding and co-channel interference cancellation ability of MIMO, the proposed algorithm shows an 8-fold gain in network capacity compared to conventional methods in the best-case scenario.

  • STBC MIMO Network Coding for Bi-directional Multi-Hop Relay Networks

    Fumie ONO  Kei SAKAGUCHI  

     
    PAPER-MIMO Mesh Network

      Page(s):
    3676-3682

    Efficient bi-directional multi-hop wireless networks based on MIMO algorithm or network coding have been proposed in recent papers. This paper proposes a new technique named as MIMO network coding, that is a combination of network coding and MIMO algorithm for multi-hop relay networks. By using MIMO network coding, co-channel interference cancellation and efficient bi-directional transmission can be realized simultaneously with lower complexity in multi-hop networks. Moreover, Space Time Block Code (STBC) MIMO transmission is also introduced to achieve higher reliability in MIMO network coding. It is confirmed from numerical analysis that the MIMO network coding with STBC achieves higher capacity and reliability than conventional schemes.

  • Adaptive Traffic Route Control in QoS Provisioning for Cognitive Radio Technology with Heterogeneous Wireless Systems

    Toshiaki YAMAMOTO  Tetsuro UEDA  Sadao OBANA  

     
    PAPER-Protocols

      Page(s):
    3683-3692

    As one of the dynamic spectrum access technologies, "cognitive radio technology," which aims to improve the spectrum efficiency, has been studied. In cognitive radio networks, each node recognizes radio conditions, and according to them, optimizes its wireless communication routes. Cognitive radio systems integrate the heterogeneous wireless systems not only by switching over them but also aggregating and utilizing them simultaneously. The adaptive control of switchover use and concurrent use of various wireless systems will offer a stable and flexible wireless communication. In this paper, we propose the adaptive traffic route control scheme that provides high quality of service (QoS) for cognitive radio technology, and examine the performance of the proposed scheme through the field trials and computer simulations. The results of field trials show that the adaptive route control according to the radio conditions improves the user IP throughput by more than 20% and reduce the one-way delay to less than 1/6 with the concurrent use of IEEE802.16 and IEEE802.11 wireless media. Moreover, the simulation results assuming hundreds of mobile terminals reveal that the number of users receiving the required QoS of voice over IP (VoIP) service and the total network throughput of FTP users increase by more than twice at the same time with the proposed algorithm. The proposed adaptive traffic route control scheme can enhance the performances of the cognitive radio technologies by providing the appropriate communication routes for various applications to satisfy their required QoS.

  • A Simple MAC Protocol for Cognitive Wireless Networks

    Abdorasoul GHASEMI  S. Mohammad RAZAVIZADEH  

     
    PAPER-Protocols

      Page(s):
    3693-3700

    A simple distributed Medium Access Control (MAC) protocol for cognitive wireless networks is proposed. It is assumed that the network is slotted, the spectrum is divided into a number of channels, and the primary network statistical aggregate traffic model on each channel is given by independent Bernoulli random variables. The objective of the cognitive MAC is to maximize the exploitation of the channels idle time slots. The cognitive users can achieve this aim by appropriate hopping between the channels at each decision stage. The proposed protocol is based on the rule of least failures that is deployed by each user independently. Using this rule, at each decision stage, a channel with the least number of recorded collisions with the primary and other cognitive users is selected for exploitation. The performance of the proposed protocol for multiple cognitive users is investigated analytically and verified by simulation. It is shown that as the number of users increases the user decision under this protocol comes close to the optimum decision to maximize its own utilization. In addition, to improve opportunity utilization in the case of a large number of cognitive users, an extension to the proposed MAC protocol is presented and evaluated by simulation.

  • 0.4-5.8 GHz SiGe-MMIC Quadrature Modulator Employing Self Current Controlled Mixer for Cognitive Radio

    Shintaro SHINJO  Fumiki ONOMA  Koji TSUTSUMI  Noriharu SUEMATSU  Mitsuhiro SHIMOZAWA  Hiroshi HARADA  

     
    PAPER-Wideband RF Systems

      Page(s):
    3701-3710

    A 0.4-5.8 GHz SiGe-MMIC quadrature modulator (Q-MOD) employing a self current controlled mixer for cognitive radio is described. The self current controlled mixer consists of a Gilbert cell mixer and a self current control circuit which is composed of both a current feedback circuit and an output buffer amplifier. The self current control circuit automatically controls the mixer current according to the output power level, and improves the linearity over wide radio frequency (RF) range. Simulation results show that the proposed Q-MOD realizes 1 dB compression point (P1 dB) improvement of more than 3.0 dB compared to the conventional Q-MOD at the frequencies of 0.4, 0.8, 1.95, 5.2 and 5.8 GHz. The fabricated Q-MOD achieves P1 dB improvement of more than 2.8 dB under the same condition. It also improves the output power with error vector magnitude (EVM) of 3.0% (Pout@EVM=3.0%), and achieves the Pout improvement of more than 2.7 dB under the modulation conditions of UHF wireless system (OFDM/16QAM, 0.4 GHz), W-CDMA (HPSK/QPSK, 0.8 GHz/1.95 GHz) and wireless-LAN (OFDM/64QAM, 5.2 GHz/5.8 GHz).

  • A 2 to 5 GHz-Band Self Frequency Dividing Quadrature Mixer Using Current Re-Use Configuration

    Eiji TANIGUCHI  Mitsuhiro SHIMOZAWA  Noriharu SUEMATSU  

     
    PAPER-Wideband RF Systems

      Page(s):
    3711-3716

    A 2 to 5 GHz-band self frequency dividing quadrature mixer utilizing current re-use configuration with small size and broad band operation is proposed for a direct conversion receiver and a low-IF receiver of cognitive radio. The proposed mixer operates at twice the LO frequency by directly using a static type flip-flop frequency divider as the LO switching circuit for quadrature signal generation. The current re-use configuration is realized because the dc current of the frequency divider and the RF common-emitter amplifier share the same current flow path. Simulations and experiments verify that the proposed mixer offers broad band operation, miniaturization, and low power consumption. The mixer IC fabricated by 0.35 µm SiGe-BiCMOS technology achieved the conversion gain of 20.6 dB, noise figure of 11.9 dB and EVM for π/4-shift QPSK signal of 4.4% at 2.1 GHz with power consumption of 15 mW and size of 0.22 0.31 mm2. For the confirmation of broad band operation, the characteristics of conversion gain and noise figure were measured at 5.2 GHz. The proposed mixer could operate at 5.2 GHz with enough conversion gain, but the noise figure was inferior to that of 2.1 GHz. Therefore the further investigation and improvement about the noise figure will be needed for higher frequency.

  • Time-Frequency Channel Parameterization with Application to Multi-Mode Receivers

    Thomas HUNZIKER  Ziyang JU  Dirk DAHLHAUS  

     
    PAPER-Multi-Mode Receiver

      Page(s):
    3717-3725

    There is a trend towards flexible radios which are able to cope with a range of wireless communication standards. For the integrated processing of widely different signals -- including single-carrier, multi-carrier, and spread-spectrum signals -- monolithic baseband receivers need universal formats for the signal representation and channel description. We consider a reconfigurable receiver architecture building on concepts from time-frequency (TF) signal analysis. The core elements are TF signal representations in form of a Gabor expansion along with a compatible parameterization of time-variant channels. While applicable to arbitrary signal types, the TF channel parameterization offers similar advantages as the frequency domain channel description employed by orthogonal frequency-division multiplexing receivers. The freedom in the choice of the underlying analysis window function and the scalability in time and frequency facilitate the handling of diverse signal types as well as the adaptation to radio channels with different delay and Doppler spreads. Optimized window shapes limit the inherent model error, as demonstrated using the example of direct-sequence spread-spectrum signaling.

  • Regular Section
  • A Method of Generating a Set of Common Coordinates for a Robot Swarm with Only Ranging Capability -- Principles and Computer Simulations --

    Tatsuya ISHIMOTO  Shinsuke HARA  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    3726-3735

    For a group of wirelessly networked robots, called "a robot swarm," to accomplish a unified task as a group, it is necessary to generate a set of common coordinates among all member robots and to notify each member robot of its heading direction in the generated common coordinates. However, when the member robots are not equipped with sensors to identify their locations or bearings, they can use only a ranging capability based in the wireless communication protocol being used to network them as a tool to generate a set of common coordinates among them. This paper presents the detailed principles of a method for generating a set of common coordinates/heading direction for a robot swarm with only ranging capability which we have proposed so far. After showing the theoretical Cramer-Rao lower-bound on the location estimation error variance, we demonstrate several computer simulation results for the proposed method with Received Signal Strength Indication (RSSI)-based ranging.

  • Frequency-Domain Equalization for Coherent Optical Single-Carrier Transmission Systems

    Koichi ISHIHARA  Takayuki KOBAYASHI  Riichi KUDO  Yasushi TAKATORI  Akihide SANO  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Page(s):
    3736-3743

    In this paper, we use frequency-domain equalization (FDE) to create coherent optical single-carrier (CO-SC) transmission systems that are very tolerant of chromatic dispersion (CD) and polarization mode dispersion (PMD). The efficient transmission of a 25-Gb/s NRZ-QPSK signal by using the proposed FDE is demonstrated under severe CD and PMD conditions. We also discuss the principle of FDE and some techniques suitable for implementing CO-SC-FDE. The results show that a CO-SC-FDE system is very tolerant of CD and PMD and can achieve high transmission rates over single mode fiber without optical dispersion compensation.

  • Capacity Analysis of Cooperative Relaying Networks with Adaptive Relaying Scheme Selection

    Kunihiko TESHIMA  Koji YAMAMOTO  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Network

      Page(s):
    3744-3752

    In the present paper, the performance of cooperative relaying networks with adaptive relaying scheme selection is analyzed. Cooperative relaying is a new technique to achieve spatial diversity gain by using neighboring stations. However, when multiple stations transmit simultaneously, the number of interference signals increases. Therefore, the introduction of cooperative relaying in radio communication systems does not always increase the network capacity due to the co-channel interference. Therefore, in order to achieve high spectral efficiency, it is necessary to select cooperative relaying or non-cooperative relaying adaptively. Assuming both centralized and decentralized adaptive controls, the spectrum efficiency is evaluated. The performance under decentralized control is evaluated using a game-theoretic approach. Simulation results show that the introduction of cooperative relaying with centralized control always increases the spectral efficiency. On the other hand, Simulation results also show that, when each source selects a relaying scheme independently and selfishly to maximize its own spectral efficiency, the introduction of the cooperative relaying may reduce the spectral efficiency due to the increase in the number of interference signals.

  • Decentralized Dynamic Sub-Carrier Assignment for OFDMA-Based Adhoc and Cellular Networks

    Van-Duc NGUYEN  Harald HAAS  Kyandoghere KYAMAKYA  Jean-Chamerlain CHEDJOU  Tien-Hoa NGUYEN  Seokho YOON  Hyunseung CHOO  

     
    PAPER-Network

      Page(s):
    3753-3764

    In this paper, a novel decentralised dynamic sub-carrier assignment (DSA) algorithm for orthogonal frequency division multiple access (OFDMA)-based adhoc and cellular networks operating in time division duplexing (TDD) mode is proposed to solve the hidden and exposed node problem in media access control (MAC). This method reduces the co-channel interference (CCI), and thus increases the overall throughput of the network. Reduced CCI and increased throughput can be achieved, if time and frequency selectivity of the multi-path fading channel and the channel reciprocity offered by the TDD are fully exploited. The time and frequency selectivity of the channel are usually the main problem in mobile communication. However, in the context of channel assignment for OFDMA-based networks in TDD mode, the time and frequency selectivity of the channel are the key to reduce the interference. In the proposed channel assignment mechanism, several clusters of sub-carriers are assigned for data transmission between a transmitter and a receiver only if the corresponding channels of those sub-carriers linking this transmitter to potential victim receivers are deeply faded. In addition, the proposed algorithm works in a fully decentralised fashion and, therefore, it is able to effectively support ad hoc and multihop communication as well as network self-organisation. Numerical results show that the throughput obtained by the proposed approach for a given quality of service is higher than those of the conventional methods in any precondition of adhoc geographic scenario.

  • Momentary Recovery Algorithm: A New Look at the Traditional Problem of TCP

    Jae-Hyun HWANG  See-Hwan YOO  Chuck YOO  

     
    PAPER-Network

      Page(s):
    3765-3773

    Traditional TCP has a good congestion control strategy that adapts its sending rate in accordance with network congestion. In addition, a fast recovery algorithm can help TCP achieve better throughput by responding to temporary network congestion well. However, if multiple packet losses occur, the time to enter congestion avoidance phase would be delayed due to the long recovery time. Moreover, during the recovery phase, TCP freezes congestion window size until all lost packets are recovered, and this can make recovery time much longer resulting in performance degradation. To mitigate such recovery overhead, we propose Momentary recovery algorithm that recovers packet loss without an extra recovery phase. As other TCP and variants, our algorithm also halves the congestion window size when packet drop is detected, but it performs congestion avoidance phase immediately as if loss recovery is completed. For lost packets, TCP sender transmits them along with normal packets as long as congestion window permits rather than performs fast retransmission. In this manner, we can eliminate recovery overhead efficiently and reach steady state momentarily after network congestion. Finally, we provide a simulation based study on TCP recovery behaviors and confirm that our Momentary recovery algorithm always shows better performance compared with NewReno, SACK, and FACK.

  • Evaluation of Free-Riding Traffic Problem in Overlay Routing and Its Mitigation Method Open Access

    Go HASEGAWA  Yuichiro HIRAOKA  Masayuki MURATA  

     
    PAPER-Network

      Page(s):
    3774-3783

    Recent research on overlay networks has revealed that user-perceived network performance could be improved by an overlay routing mechanism. The effectiveness of overlay routing is mainly a result of the policy mismatch between the overlay routing and the underlay IP routing operated by ISPs. However, this policy mismatch causes a "free-riding" traffic problem, which may become harmful to the cost structure of Internet Service Providers. In the present paper, we define the free-riding problem in the overlay routing and evaluate the degree of free-riding traffic to reveal the effect of the problem on ISPs. We introduce a numerical metric to evaluate the degree of the free-riding problem and confirm that most multihop overlay paths that have better performance than the direct path brings the free-riding problem. We also discuss the guidelines for selecting paths that are more effective than the direct path and that mitigate the free-riding problem.

  • Improve Throughput of Ad Hoc Networks Using Power Controlled Busy Tone

    Kewang ZHANG  Deyun ZHANG  

     
    PAPER-Network

      Page(s):
    3784-3793

    The hidden terminal problem leads to frequent collisions and decreases the throughput of ad hoc networks dramatically. Low network spatial reuse also results in fewer parallel transmissions, which further leads to reduced network throughput. Eliminating the hidden terminals and improving the spatial reuse are two important approaches to improving network throughput. In this paper, spatial distribution of the hidden terminals is analyzed in consideration of accumulated interference and environmental noise. As the distribution of hidden terminals is affected by many factors such as transmitter-receiver distance, SINR requirement and nodes density, it is inefficient to use fixed busy tone transmission power. To eliminate the hidden terminals and improve network spatial reuse, an enhancement to DBTMA named EDBTMA is proposed. This is achieved by using an adaptive busy tone power control scheme. Receivers adjust the transmission power of busy tone according to received signal power and accumulated interference adaptively so that all hidden terminals (and only hidden terminals) are covered by the busy tone. Simulation results show that EDBTMA protocol can solve the hidden terminal problem and improve network spatial reuse better than DBTMA and achieves 65% additional network throughput compared to DBTMA.

  • Efficient Frequency Sharing of Baseband and Subcarrier Coding UHF RFID Systems

    Jin MITSUGI  Yuusuke KAWAKITA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3794-3802

    UHF band passive RFID systems are being steadily adopted by industries because of their capability of long range automatic identification with passive tags. For an application which demands a large number of readers located in a limited geographical area, referred to as dense reader mode, interference rejection among readers is important. The coding method, baseband or subcarrier coding, in the tag-to-reader communication link results in a significant influence on the interference rejection performance. This paper examines the frequency sharing of baseband and subcarrier coding UHF RFID systems from the perspective of their transmission delay using a media access control (MAC) simulator. The validity of the numerical simulation was verified by an experiment. It is revealed that, in a mixed operation of baseband and subcarrier systems, assigning as many channels as possible to baseband system unless they do not exploit the subcarrier channels is the general principle for efficient frequency sharing. This frequency sharing principle is effective both to baseband and subcarrier coding systems. Otherwise, mixed operation fundamentally increases the transmission delay in subcarrier coding systems.

  • Scattered Pilot Assisted Channel Estimation for IFDMA Uplink

    Takeo YAMASAKI  Osamu TAKYU  Yohtaro UMEDA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3803-3814

    Interleaved Frequency Division Multiple Access (IFDMA) is a modulation scheme that achieves a frequency diversity gain and establishes a frequency orthogonal channel. In multicarrier modulation schemes such as orthogonal frequency division multiplexing (OFDM), a pilot signal is dispersed over the frequency and time domains and thus the estimated channel transfer function can track the fluctuations that occur in the time and frequency domains. This pilot signal is referred to as a scattered pilot signal. However, the scattered pilot signal has not yet been applied to IFDMA. In this paper, we propose a scattered pilot signal for IFDMA. The problem with the proposed scattered pilot signal is that it increases the peak to average power ratio of the transmitted signal. Therefore, we also propose three peak-to-average power ratio (PAPR) reduction schemes for the IFDMA symbols including the scattered pilot signal. A computer simulation shows that the proposed pilot signal achieves a highly accurate channel estimation under various channel conditions and that the proposed reduction shemes significantly reduce the PAPR.

  • Performance of Downlink DSTBC-WCDMA in Fast-Varying Time-Dispersive Channels

    Edwin M. UMALI  Joel Joseph S. MARCIANO, Jr.  Yasushi YAMAO  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3815-3826

    This paper presents the performance of DSTBC when applied on the downlink transmission of WCDMA cellular systems in fast-varying time-dispersive channels. First, three DSTBC-WCDMA receiver architectures are proposed and they are: (1) the DSTBC Rake receiver for combined-code (D-Rake-C), (2) the DSTBC deterministic receiver for combined-code (D-Det-C), and (3) the DSTBC deterministic de-prefix receiver for combined-code (D-Det-DP-C). Detection can be divided into a correlator that combines descrambling and despreading, and a DSTBC decoder. The correlator is designed to perform signal separation of the multipath-multiuser signal via least-square (LS) estimation. To enable the correlator to perform signal separation at every block period, the long combined spreading and scrambling codes are divided into shorter codes. Then, the proposed receivers are theoretically analyzed in time-dispersive channels and multiple-user environment using the moment generating function (MGF) of fading distributions. For analyzing interference tolerance, the standard Gaussian approximation is employed. Finally, simulations are performed. Theoretical performance well matches simulated results. Among the three receivers, the D-Det-DP-C receiver has the best performance in time-dispersive channels with a maximum excess delay of 4 chips and a maximum Doppler frequency of 250 Hz. Results also show minimal performance degradation for fast fading channels with a maximum Doppler frequency of 1200 Hz. The best performance is obtained when the receiver has the information on the maximum excess delay and all users' spreading codes.

  • Delay Analysis and Optimization of Bandwidth Request under Unicast Polling in IEEE 802.16e over Gilbert-Elliot Error Channel

    Eunju HWANG  Kyung Jae KIM  Frank ROIJERS  Bong Dae CHOI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3827-3835

    In the centralized polling mode in IEEE 802.16e, a base station (BS) polls mobile stations (MSs) for bandwidth reservation in one of three polling modes; unicast, multicast, or broadcast pollings. In unicast polling, the BS polls each individual MS to allow to transmit a bandwidth request packet. This paper presents an analytical model for the unicast polling of bandwidth request in IEEE 802.16e networks over Gilbert-Elliot error channel. We derive the probability distribution for the delay of bandwidth requests due to wireless transmission errors and find the loss probability of request packets due to finite retransmission attempts. By using the delay distribution and the loss probability, we optimize the number of polling slots within a frame and the maximum retransmission number while satisfying QoS on the total loss probability which combines two losses: packet loss due to the excess of maximum retransmission and delay outage loss due to the maximum tolerable delay bound. In addition, we obtain the utilization of polling slots, which is defined as the ratio of the number of polling slots used for the MS's successful transmission to the total number of polling slots used by the MS over a long run time. Analysis results are shown to well match with simulation results. Numerical results give examples of the optimal number of polling slots within a frame and the optimal maximum retransmission number depending on delay bounds, the number of MSs, and the channel conditions.

  • Channel Estimation Scheme with Low-Complexity Discrete Cosine Transform in MIMO-OFDM System

    Daisuke TAKEDA  Yasuhiko TANABE  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3836-3842

    Channel estimation is a key baseband processing task in wireless systems. Filtering or smoothing algorithms can improve the accuracy of channel estimates and the Discrete Cosine Transform (DCT) can be used for this purpose. By using the DCT, performance will be improved compared to the straight-forward approach of per subcarrier estimation (PSE). However, the complexity of the DCT is not negligible. This paper proposes a low-complexity channel estimation scheme using the DCT. Simulation results show that the performance is improved by more than 1dB compared with PSE in MIMO-OFDM system.

  • A Novel Composite Right/Left-Handed Rectangular Waveguide with Tilted Corrugations and Its Application to Millimeter-Wave Frequency-Scanning Antenna

    Toru IWASAKI  Hirokazu KAMODA  Takao KUKI  

     
    PAPER-Antennas and Propagation

      Page(s):
    3843-3849

    A novel structure for a composite right/left-handed (CRLH) corrugated waveguide in the millimeter-wave band is proposed. The CRLH waveguide is composed of a rectangular waveguide with tilted corrugations on its bottom broad wall. By operating above and below the cutoff frequency of the dominant mode of the rectangular waveguide, the CRLH waveguide provides, respectively, an inherent series inductance and shunt capacitance, and an inherent shunt inductance. Moreover, the tilted corrugations provide a series inductance and a series capacitance, which can support CRLH propagation. A frequency-scanning antenna using this CRLH waveguide is also studied numerically and experimentally. The results demonstrate that the antenna can provide backward-to-forward beam scanning, including the broadside direction. A scanning angle from -9.9 to +2.2 is achieved within a 1.8-GHz frequency range in the 60-GHz band.

  • Plane-Wave and Vector-Rotation Approximation Technique for Reducing Computational Complexity to Simulate MIMO Propagation Channel Using Ray-Tracing Open Access

    Wataru YAMADA  Naoki KITA  Takatoshi SUGIYAMA  Toshio NOJIMA  

     
    PAPER-Antennas and Propagation

      Page(s):
    3850-3860

    This paper proposes new techniques to simulate a MIMO propagation channel using the ray-tracing method for the purpose of decreasing the computational complexity. These techniques simulate a MIMO propagation channel by substituting the propagation path between a particular combination of transmitter and receiver antennas for all combinations of transmitter and receiver antennas. The estimation accuracy calculated using the proposed techniques is evaluated based on comparison to the results calculated using imaging algorithms. The results show that the proposed techniques simulate a MIMO propagation channel with low computational complexity, and a high level of estimation accuracy is achieved using the proposed Vector-Rotation Approximation technique compared to that for the imaging algorithm.

  • Simple Switched-Beam Array Antenna System for Mobile Satellite Communications

    BASARI  M. Fauzan E. PURNOMO  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Page(s):
    3861-3868

    This paper presents a simple antenna system for land vehicle communication aimed at Engineering Test Satellite-VIII (ETS-VIII) applications. The developed antenna system which designed for mounting in a vehicle is compact, light weight and offers simple satellite-tracking operation. This system uses a microstrip patch array antenna, which includes onboard-power divider and switching circuit for antenna feeding control, due to its low profile. A Global Positioning System (GPS) receiver is constructed to provide accurate information on the vehicle's position and bearing during traveling. The personal computer (PC) interfaces as the control unit and data acquisition, which were specifically designed for this application, allow the switching circuit control as well as the retrieving of the received power levels. In this research, the antenna system was firstly examined in an anechoic chamber for S parameter, axial ratio, and radiation characteristics. Satisfactory characteristics were obtained. As for beam-tracking of antenna, it was examined in the anechoic chamber with the gain above 5 dBic and the axial ratio below 3 dB. Moreover, good received power levels for tracking the ETS-VIII satellite in outdoor measurement, were confirmed.

  • Analysis of Huge-Scale Periodic Array Antenna Using Impedance Extension Method

    Keisuke KONNO  Qiang CHEN  Kunio SAWAYA  Toshihiro SEZAI  

     
    PAPER-Antennas and Propagation

      Page(s):
    3869-3874

    An extreamly large scale periodic array antenna is required for transmitting power from space solar power systems. Analysis of the huge-scale array antenna is important to estimate the radiation property of the array antenna, but a full-wave analysis requires too much computer memory and excessive CPU time. In order to overcome these difficulties, the impedance extension method is proposed as a method of approximate analysis for huge periodic array antennas. From the results of actual gain pattern obtained by the proposed method and its relative error, it is shown that edge effects of a huge-scale array antenna can be ignored in calculating the radiation property.

  • Estimation of Bridge Height over Water from Polarimetric SAR Image Data Using Mapping and Projection Algorithm and De-Orientation Theory

    Haipeng WANG  Feng XU  Ya-Qiu JIN  Kazuo OUCHI  

     
    PAPER-Sensing

      Page(s):
    3875-3882

    An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.

  • Comparison and Evaluation of Ship Detection and Identification Algorithms Using Small Boats and ALOS-PALSAR

    Seong-In HWANG  Haipeng WANG  Kazuo OUCHI  

     
    PAPER-Sensing

      Page(s):
    3883-3892

    The final goal of the present project is to develop a ship detection and identification system by integrating spaceborne synthetic aperture radar (SAR), ground-based maritime radar and automatic identification system (AIS); and this article presents the results of the first phase experiments and current status toward achieving this goal. The data acquired by the Phased Array L-band SAR (PALSAR) on board of the Advanced Land Observing Satellite (ALOS) were used as SAR data, and X-band maritime radar including AIS were used as a ground-based system. The work is divided into two experimental phases. The first phase is to examine the ability of PALSAR to detect ships whose sizes are comparable with the SAR resolution cells, and the second is to incorporate the PALSAR data with those acquired by the ground-based radar with AIS. For the experiments in the first phase, we deployed three small fishing boats whose lengths ranged from approximately 8 m to 15 m in the Tosa Bay in Kochi, Japan in 2006. The experiments were carried out for four observation PALSAR modes: FBS (Fine Beam Single) 34.3, FBS 21.5, FBD (Fine Beam Double) 41.5, and PLR (PoLaRimetric) 20.5, where the numbers in each modes represent the off-nadir angles. For extracting the boats from the PALSAR images, five algorithms were considered, including amplitude-based, CFAR (Constant False Alarm Rate), MLCC (Multi-Look Cross-Correlation), CCF (Cross-Correlation Function) of HH- and HV-polarization amplitudes, and polarimetric analyses. This paper summarizes the results of the first phase experiments; the summary of the integrated system in the second phase will be reported in the near future.

  • Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    Hyeong-Min NAM  Chun-Su PARK  Seung-Won JUNG  Sung-Jea KO  

     
    PAPER-Multimedia Systems for Communications

      Page(s):
    3893-3902

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  • A Modified Variable Error-Data Normalized Step-Size LMS Adaptive Filter Algorithm

    Chee-Hyun PARK  Kwang-Seok HONG  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    3903-3906

    This letter proposes a new adaptive filtering method that uses the last L desired signal samples as an extra input vector, besides the existing input data, to reduce mean square error. We have improved the convergence rate by adopting the squared norm of the past error samples, in addition to the modified cost function. The modified variable error-data normalized step-size least mean square algorithm provides fast convergence, ensuring a small final misadjustment. Simulation results indicate its superior mean square error performance, while its convergence rate equals that of existing methods. In addition, the proposed algorithm shows superior tracking capability when the system is subjected to an abrupt disturbance.

  • A Hierarchical Preamble Design Technique for Efficient Handovers in OFDM-Based Multi-Hop Relay Systems

    Hyun-Il YOO  Young-Jun KIM  Kyung-Soo WOO  Jaekwon KIM  Sangboh YUN  Yong-Soo CHO  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    3907-3910

    In this paper, a new handover procedure for OFDM-based multi-hop relay systems is proposed to reduce handover overhead by distinguishing an inter-cell handover event from an intra-cell handover event at the level of the physical layer using a preamble with a hierarchical design. A Subcell ID concept used to identify relay station in a cell is proposed in the hierarchical design that works in conjunction with the existing Cell ID used to identify base station. The proposed handover procedure can simplify the scanning procedure and skip/simplify the network re-entry procedure, resulting in a significant reduction in handover overhead.

  • Raman-Based 10.66 Gb/s Bidirectional TDM over Long-Reach WDM Hybrid PON

    Hsin-Min WANG  Hidenori TAGA  

     
    LETTER-Fiber-Optic Transmission for Communications

      Page(s):
    3911-3914

    In this paper, we demonstrate a 10.66 Gb/s bidirectional TDM over long-reach WDM hybrid PON supported by distributed Raman amplification, and the power budget margin is measured to be 15 dB for downstream transmission and 12 dB for upstream transmission, with dual Raman pump power of 300 mW.

  • A Topology Control Scheme for Selecting Active Nodes in Wireless Sensor Networks

    Kyungjun KIM  Kijun HAN  

     
    LETTER-Network

      Page(s):
    3915-3918

    Power consumption is one of the most important factors in successfully designing of wireless sensor networks since it directly affects network lifetime. We propose a topology control scheme that reduces power consumption by minimizing, as much as possible, the number of active nodes, in a highly dense region as well as to decrease packet transmission delay. Simulation results show that our scheme can effectively solve the energy inefficiency problem caused by unbalanced power consumption, and can significantly reduce packet transmission delay.

  • Bandwidth Allocation for QoS Using Adaptive Modulation and Coding in IEEE 802.16 Networks

    Hyun-Wook JO  Jae-Han JEON  Jong-Tae LIM  

     
    LETTER-Network

      Page(s):
    3919-3922

    In recent years, there have been many studies on integrating a number of heterogeneous wireless networks into one network by establishing standards like IEEE 802.16. For this purpose, the base station (BS) should allocate the appropriate bandwidth to each connection with a network scheduler. In wireless networks, the signal to noise ratio (SNR) changes with time due to many factors such as fading. Hence, we estimate the SNR based on the error rate reflecting wireless network condition. Using the estimated SNR, we propose a new time slot allocation algorithm so that the proposed algorithm guarantees the delay requirement and full link utilization.

  • Distributed Stable Flooding Using Delay Function Based on Redundancy

    Wonjong NOH  

     
    LETTER-Network

      Page(s):
    3923-3926

    In this work, we propose a delayed data forwarding scheme using delay function. According to the link status and network topology, each node gives arrived packets some delay before forwarding them so that the packet flows through the most stable route. We first propose conservative delay function from strict end-to-end delay bound and then relax it more and more and finally introduce a SNR based delay function using cross-layer concept between link layer and network layer. We show its performance by some analysis and simulation in mesh networks. This scheme is useful for stable data routing in highly dynamic networks.

  • Energy Optimal Epidemic Routing for Delay Tolerant Networks

    Jeonggyu KIM  Jongmin SHIN  Dongmin YANG  Cheeha KIM  

     
    LETTER-Network

      Page(s):
    3927-3930

    We propose a novel epidemic routing policy, named energy optimal epidemic routing, for delay tolerant networks (DTNs). By investigating the tradeoff between delay and energy, we found the optimal transmission range as well as the optimal number of infected nodes for the minimal energy consumption, given a delivery requirement, specifically delay bound and delivery probability to the destination. We derive an analytic model of the Binary Spraying routing to find the optimal values, describing the delay distributions with respect to the number of infected nodes.

  • Low-Power Based Coherent Acoustic Modem for High-Speed Communication in Underwater Sensor Networks

    Heungwoo NAM  Sunshin AN  

     
    LETTER-Network

      Page(s):
    3931-3934

    As the need for underwater communication has recently grown, an acoustic modem has become more necessary for the sensor nodes to perform effective underwater communication. To develop acoustic modems for effective underwater communication, some limitations must be overcome, such as the limited power supply and high cost of commercial acoustic modems. Recently, low-power, low-cost acoustic modems have been developed. However, the data rates of these modems are very slow. The objective of this work is to develop an acoustic modem capable of supporting high data rates. We introduce a coherent acoustic modem that uses waterproof ultrasonic sensors to process acoustic waves. The proposed modem is based on a low-power, low-cost, short-range concept, and it also supports a high data rate as confirmed by underwater experiments. Experimental results show that our modem has the best performance among all recently developed low-power modems.

  • QSLS: Efficient Quorum Based Sink Location Service for Geographic Routing in Irregular Wireless Sensor Networks

    Fucai YU  Soochang PARK  Euisin LEE  Younghwan CHOI  Sang-Ha KIM  

     
    LETTER-Network

      Page(s):
    3935-3938

    Geographic routing for wireless sensor networks requires a source that can encapsulate the location of a sink in each data packet. How a source can obtain the location of a sink with low overhead is a difficult issue. This letter proposes a Quorum Based Sink Location Service (QSLS) which can be exploited by most geographic routing protocols in arbitrary irregular wireless sensor networks.

  • Link-Adaptive MAC Protocol for Wireless Multicast

    Byung-Seo KIM  Sung Won KIM  Kook-Yeol YOO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3939-3941

    Previous researches on ad-hoc networks did not consider the dynamic rate adaptation for wireless multicast. Instead, they statically use the lowest data rate for multicast transmission. The MAC protocol proposed in this paper utilizes the OFDMA mechanism, so that all members can report their rate preference at one time. As a result, the best rate for each member is dynamically selected.

  • Diversity Order Analysis of Dual-Hop Relaying with Partial Relay Selection

    Vo Nguyen Quoc BAO  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3942-3946

    In this paper, we study the performance of dual hop relaying in which the best relay selected by partial relay selection will help the source-destination link to overcome the channel impairment. Specifically, closed-form expressions for outage probability, symbol error probability and achievable diversity gain are derived using the statistical characteristic of the signal-to-noise ratio. Numerical investigation shows that the system achieves diversity of two regardless of relay number and also confirms the correctness of the analytical results. Furthermore, the performance loss due to partial relay selection is investigated.

  • MU-MIMO Pairing Algorithm Using Received Power

    Young-Joon KIM  Jung-Seung LEE  Doo-Kwon BAIK  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3947-3949

    In this letter, a new received power pairing scheduling (PPS) algorithm is proposed for Multi User Multiple Input and Multiple Output (MU-MIMO) systems. In contrast to existing algorithms that manage complex orthogonal factors, the PPS algorithm simply utilizes CINR to determine a MU-MIMO pair. Simulation results show that the PPS algorithm achieves up to 77% of MU-MIMO gain of determinant pairing scheduling (DPS) with low complexity.

  • Joint Adaptive M-QAM and Selection Combining in SVD-Based MIMO Systems

    Sang-Do LEE  Young-Chai KO  Jeong-Jae WON  Taehyun JEON  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3950-3952

    In this paper, we propose a hybrid M-ary Quadrature Amplitude Modulation (M-QAM) transmission scheme that jointly uses discrete-rate adaptation and selection combining for singular value decomposition (SVD)-based multiple-input multiple-output (MIMO) systems, and derive exact closed-form expressions of the performance of the proposed scheme in terms of the average spectral efficiency and the outage probability.

  • Filter Size Determination of Moving Average Filters for Extended Differential Detection of OFDM Preambles

    Minjoong RIM  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3953-3956

    OFDM (Orthogonal Frequency Division Multiplexing) is widely used in wideband wireless communication systems due to its excellent performance. One of the most important operations in OFDM receivers is preamble detection. This paper addresses a general form of extended differential detection methods, which is a combination of differential detection and a moving average filter. This paper also presents a filter size determination method that achieves satisfactory performance in various channel environments.

  • On the Performance of Two-Way Amplify-and-Forward Relay Networks

    Trung Quang DUONG  Le-Nam HOANG  Vo Nguyen Quoc BAO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3957-3959

    The performance of two-way amplify-and-forward (AF) relay networks is presented. In particular, we derive exact closed-form expressions for symbol error rate (SER), average sum-rate, and outage probability of two-way AF relay systems in independent but not identically distributed (i.n.i.d.) Rayleigh fading channels. Our analysis is validated by a comparison against the results of Monte-Carlo simulations.

  • Bandwidth Characteristic Improvement of Filter Integrated Antenna Composed of Aperture Coupled Patch Antenna by Using Trapezoidal Elements

    Huiling JIANG  Ryo YAMAGUCHI  Keizo CHO  

     
    LETTER-Antennas and Propagation

      Page(s):
    3960-3963

    A filter integrated antenna configuration that suppresses the coupling signal from the transmitter (Tx) to receiver (Rx) base station antenna is investigated. We propose an aperture coupled patch antenna with multiple trapezoidal elements installed on the substrate of the Rx antenna between the radiation and feed layers in order to increase the bandwidth in the Rx band while maintaining low mutual coupling in the Tx band. The mutual coupling characteristics and the fractional bandwidth of the Rx antenna are presented as functions of the shape and width of the trapezoidal elements.

  • A Compact On-Frequency Indoor Repeater Antenna with High Isolation for WCDMA Applications

    Youngki LEE  Jeongpyo KIM  Jaehoon CHOI  

     
    LETTER-Antennas and Propagation

      Page(s):
    3964-3967

    In this paper, an indoor repeater antenna with high isolation for WCDMA application is proposed. The designed repeater has very small separation of 20 mm between the donor and server antennas. The antenna has two resonance frequencies to cover the WCDMA band from 1.92 GHz to 2.17 GHz. The fabricated antenna has VSWR below 1.5, gain over 8 dBi, and isolation between server and donor antennas less than -80 dB in the WCDMA band.

  • Optimization of Polarimetric Contrast Enhancement Based on Fisher Criterion

    Qiming DENG  Jiong CHEN  Jian YANG  

     
    LETTER-Sensing

      Page(s):
    3968-3971

    The optimization of polarimetric contrast enhancement (OPCE) is a widely used method for maximizing the received power ratio of a desired target versus an undesired target (clutter). In this letter, a new model of the OPCE is proposed based on the Fisher criterion. By introducing the well known two-class problem of linear discriminant analysis (LDA), the proposed model is to enlarge the normalized distance of mean value between the target and the clutter. In addition, a cross-iterative numerical method is proposed for solving the optimization with a quadratic constraint. Experimental results with the polarimetric SAR (POLSAR) data demonstrate the effectiveness of the proposed method.

  • Squared Range Weighted Least Squares Source Localization Based on the Element-Wise and Vector-Wise Orthogonality Principles

    Chee-Hyun PARK  Kwang-Seok HONG  

     
    LETTER-Sensing

      Page(s):
    3972-3975

    Estimating a location of mobile phones or sound source is of considerable interest in wireless communications and signal processing. In this letter, we propose squared range weighted least squares (SRWLS) using the range estimate attained from the Taylor series-based maximum likelihood. The weight can be determined more accurately when using the proposed method, compared with the existing methods using the variance of noise. The simulation results show that the proposed method is superior to the existing methods in RMSE as the measurement noise amount of sensors increases.