The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

7021-7040hit(18690hit)

  • DC and RF Performance of AlN/GaN MOS-HEMTs

    Sanna TAKING  Douglas MACFARLANE  Ali Z. KHOKHAR  Amir M. DABIRAN  Edward WASIGE  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    835-841

    This paper reports the DC and RF characteristics of AlN/GaN MOS-HEMTs passivated with thin Al2O3 formed by thermal oxidation of evaporated aluminium. Extraction of the small-signal equivalent circuit is also described. Device fabrication involved wet etching of evaporated Al from the Ohmic contact regions prior to metal deposition. This approach yielded an average contact resistance of ∼0.76 Ω.mm extracted from transmission line method (TLM) characterisation. Fabricated two-finger AlN/GaN MOS-HEMTs with 0.2 µm gate length and 100 µm gate width showed good gate control of drain currents up to a gate bias of 3 V and achieved a maximum drain current, IDSmax of ∼1460 mA/mm. The peak extrinsic transconductance, Gmax, of the device was ∼303 mS/mm at VDS = 4 V. Current-gain cut-off frequency, fT, and maximum oscillation frequency, fMAX, of 50 GHz and 40 GHz, respectively, were extracted from S-parameter measurements. For longer gate length, LG = 0.5 µm, fT and fMAX were 20 GHz and 30 GHz, respectively. These results demonstrate the potential of AlN/GaN MOS-HEMTs for high power and high frequency applications.

  • Interactive Facial-Geometric-Feature Animation for Generating Expressions of Novel Faces

    Yang YANG  Zejian YUAN  Nanning ZHENG  Yuehu LIU  Lei YANG  Yoshifumi NISHIO  

     
    PAPER-Computer Graphics

      Vol:
    E94-D No:5
      Page(s):
    1099-1108

    This paper introduces an interactive expression editing system that allows users to design facial expressions easily. Currently, popular example-based methods construct face models based on the examples of target face. The shortcoming of these methods is that they cannot create expressions for novel faces: target faces not previously recorded in the database. We propose a solution to overcome this limitation. We present an interactive facial-geometric-feature animation system for generating expressions of novel faces. Our system is easy to use. By click-dragging control points on the target face, on the computer screen display, unique expressions are generated automatically. To guarantee natural animation results, our animation model employs prior knowledge based on various individuals' expressions. One model prior is learned from motion vector fields to guarantee effective facial motions. Another, different, model prior is learned from facial shape space to ensure the result has a real facial shape. Interactive animation problem is formulated in a maximum a posterior (MAP) framework to search for optimal results by combining the priors with user-defined constraints. We give an extension of the Motion Propagation (MP) algorithm to infer facial motions for novel target faces from a subset of the control points. Experimental results on different facial animations demonstrate the effectiveness of the proposed method. Moreover, one application of our system is exhibited in this paper, where users create expressions for facial sketches interactively.

  • An Image Stabilization Technology for Digital Still Camera Based on Blind Deconvolution

    Haruo HATANAKA  Shimpei FUKUMOTO  Haruhiko MURATA  Hiroshi KANO  Kunihiro CHIHARA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E94-D No:5
      Page(s):
    1082-1089

    In this article, we present a new image-stabilization technology for still images based on blind deconvolution and introduce it to a consumer digital still camera. This technology consists of three features: (1)double-exposure-based PSF detection, (2)efficient image deblurring filter, and (3)edge-based ringing reduction. Without deteriorating the deblurring performance, the new technology allows us to reduce processing time and ringing artifacts, both of which are common problems in image deconvolution.

  • Energy and Link-State Based Routing Protocol for MANET

    Shi ZHENG  Weiqiang WU  Qinyu ZHANG  

     
    PAPER-Information Network

      Vol:
    E94-D No:5
      Page(s):
    1026-1034

    Energy conservation is an important issue in mobile ad hoc networks (MANET), where the terminals are always supplied with limited energy. A new routing protocol is presented according to the study on the influence of low-energy nodes in ad hoc networks. The novel routing protocol (energy sensing routing protocol, ESRP) is based on the energy sensing strategy. Multiple strategy routing and substitute routing are both adopted in this paper. Referring to the level of the residual energy and the situation of energy consumption, different routes are chosen for packets transmission. The local maintenance is adopted, which can reduce packets retransmission effectively when the link breaks. We focus on the network lifetime most in all performances. The evaluation is done in comparison with other routing protocols on NS2 platform, and the simulation results show that this routing protocol can prolong the network lifetime and balance energy consumption effectively.

  • A Low-Overhead and Low-Power RF Transceiver for Short-Distance On- and Off-Chip Interconnects

    Jongsun KIM  Gyungsu BYUN  M. Frank CHANG  

     
    BRIEF PAPER

      Vol:
    E94-C No:5
      Page(s):
    854-857

    One of the most difficult problems that remains to be solved in wire interconnect architectures is the achievement of lower latency and higher concurrency on a shared bus or link without increasing the power and circuit overhead. Novel improvements in short distance on- and off-chip interconnects can be provided by using a multi-band RF interconnect (RF-I) system. Unlike the conventional current- or voltage-mode square wave signaling transceivers that use binary or multilevel baseband signals, the proposed RF-I transceiver uses high-frequency modulated RF passband signals with binary phase-shift keying (BPSK) modulation. The proposed low-overhead RF-I transceiver using 0.18-µm CMOS technology achieves an aggregate data rate of 4 Gb/s/pin between four I/Os (2Tx-to-2Rx) on a shared FR4 PCB line using two carriers of 6 GHz and 12 GHz. The two transceivers occupy an area of 0.077 mm2 and dissipate a power of about 25 mW with a power efficiency of 6.25 pJ/bit.

  • An SMT-Based Approach to Bounded Model Checking of Designs in State Transition Matrix

    Weiqiang KONG  Tomohiro SHIRAISHI  Noriyuki KATAHIRA  Masahiko WATANABE  Tetsuro KATAYAMA  Akira FUKUDA  

     
    PAPER-Model Checking

      Vol:
    E94-D No:5
      Page(s):
    946-957

    State Transition Matrix (STM) is a table-based modeling language that has been frequently used in industry for specifying behaviors of systems. Functional correctness of a STM design (i.e., a design developed with STM) could often be expressed as invariant properties. In this paper, we first present a formalization of the static and dynamic aspects of STM designs. Consequentially, based on this formalization, we investigate a symbolic encoding approach, through which a STM design could be bounded model checked w.r.t. invariant properties by using Satisfiability Modulo Theories (SMT) solving technique. We have built a prototype implementation of the proposed encoding and the state-of-the-art SMT solver - Yices, is used in our experiments to evaluate the effectiveness of our approach. Two attempts for accelerating SMT solving are also reported.

  • Polarization Degrees of Freedom of Hexapolarized MIMO System in the Ground Reflected Channel

    Dazhi PIAO  Guizhen LU  Zhixing YANG  

     
    LETTER-MIMO Propagation

      Vol:
    E94-B No:5
      Page(s):
    1284-1287

    The polarization degrees of freedom (DOF) of the hexapolarized multiple input multiple output (MIMO) system over the ground reflected channel is studied in this paper by the deterministic field solution. Using the simple two-ray model, we could get some basic understandings for the influence of a single reflecting surface on the polarization DOF of the multipolarized MIMO system. Computation results show that the number of parallel independent channels in a multipolarized MIMO system depends mainly on the communication range and the height of antennas. In free space transmission, with equal height of transmitter and receiver antennas, large polarization DOF value only occurs in the near field case and it drops sharply to 2 with the increase of transmission range. Whereas for the ground reflect channel, there will be a polarization DOF larger than 4 occurring at longer communication distance with an unequal transmitter and receiver antenna height.

  • The Impact of Current Controlled-MOS Current Mode Logic/Magnetic Tunnel Junction Hybrid Circuit for Stable and High-Speed Operation

    Tetsuo ENDOH  Masashi KAMIYANAGI  Masakazu MURAGUCHI  Takuya IMAMOTO  Takeshi SASAKI  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    743-750

    In order to realize Integrated Circuits (IC) with operation over the 10 GHz range, conventional CMOS logic faces critical issues, such as increasing power consumption, and difficulty to aggressively scale the device size and so on. To overcome this issue, we have proposed Current Controlled-MOS Current Mode Logic (CC-MCML) to realize the reduction of power consumption and the enhancement of the operation speed in logic circuits without scaling the gate length of the MOSFET, and confirmed the performance of these circuits both theoretically and experimentally. In the CC-MCML it is extremely important to control the input voltage of the MOSFET used as the constant current source in order to make the base voltage of the input signal and the output signal equivalent. In this paper, we propose CC-MCML/MTJ (Magnetic Tunnel Junction) circuit, which is one type of nonvolatile memory hybrid circuit technology. A more stable and precise operation is realized by cutting the range of the input voltage of the constant current source, and it is shown that the operation of CC-MCML/MTJ Hybrid Circuit enables us to suppress the base voltage difference due to the Vth fluctuation in comparison with the conventional CC-MCML. These results imply the high potential of Si-CMOS/Spintronics Hybrid technologies for future IC.

  • Robust Authentication Scheme between User and Remote Autonomous Object in Telecommunications System

    Eun-Jun YOON  Il-Soo JEON  Kee-Young YOO  

     
    LETTER-Information Network

      Vol:
    E94-D No:5
      Page(s):
    1113-1116

    Autonomous objects represent active database objects which can be distributed over the Internet. This paper proposes a robust authentication scheme for the remote autonomous object based on AES (Advanced Encryption Standard) symmetric cryptosystem. Compared with related schemes, the proposed scheme not only resists various security attacks but also provides computation and communication efficiency.

  • Performance Evaluation of Routing Schemes for the Energy-Constrained DTN with Selfish Nodes

    Yong LI  Depeng JIN  Li SU  Lieguang ZENG  

     
    LETTER-Network

      Vol:
    E94-B No:5
      Page(s):
    1442-1446

    Due to the lack of end-to-end paths between the communication source and destination, the routing of Delay Tolerant Networks (DTN) exploits the store-carry-and-forward mechanism. This mechanism requires nodes with sufficient energy to relay and forward messages in a cooperative and selfless way. However, in the real world, the energy is constrained and most of the nodes exhibit selfish behaviors. In this paper, we investigate the performance of DTN routing schemes considering both the energy constraint and selfish behaviors of nodes. First, we model the two-hop relay and epidemic routing based on a two-dimensional continuous time Markov chain. Then, we obtain the system performance of message delivery delay and delivery cost by explicit expressions. Numerical results show that both the energy constraint and node selfishness reduce the message delivery cost at the expense of increasing the message delivery delay. Furthermore, we demonstrate that the energy constraint plays a more important role in the performance of epidemic routing than that of two-hop relay.

  • A Particle Filter Approach to Robust State Estimation for a Class of Nonlinear Systems with Stochastic Parameter Uncertainty

    Sehoon KIM  Sangchul WON  

     
    PAPER-Systems and Control

      Vol:
    E94-A No:5
      Page(s):
    1194-1200

    In this paper, we propose a robust state estimation method using a particle filter (PF) for a class of nonlinear systems which have stochastic parameter uncertainties. A robust PF was designed using prediction and correction structure. The proposed PF draws particles from a simple proposal density function and corrects the particles with particle-wise correction gains. We present a method to obtain an error variance of each particle and its upper bound, which is minimized to determine the correction gain. The proposed method is less restrictive on system nonlinearities and noise statistics; moreover, it can be applied regardless of system stability. The effectiveness of the proposed robust PF is illustrated via an example based on Chua's circuit.

  • Iterative Minimum Mean Square Error Interference Alignment Scheme for the MIMO X Channel

    Hui SHEN  Bin LIN  Yi LUO  Feng LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1348-1354

    In this paper, we propose a new interference alignment (IA) scheme that jointly designs the linear transmitter and receiver for the 2-user MIMO X channel system, using minimum total mean square error criterion, subject to each transmitter power constraint. We show that transmitters and receivers under such criteria could be realized through a joint iterative algorithm. Considering the imperfection of channel state information (CSI), we also extend the minimum mean square error interference alignment schemes for the MIMO X channel with CSI estimation error. A robust iterative algorithm which is insensitve to CSI estimation error is proposed. Simulation results are also provided to demonstrate the proposed algorithm.

  • A New 1T DRAM Cell: Cone Type 1T DRAM Cell

    Gil Sung LEE  Doo-Hyun KIM  Seongjae CHO  Byung-Gook PARK  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    681-685

    We propose a new cone-type DRAM cell as a 1T DRAM cell. The superiority of cone shape is already reported, in that the electric field concentration effect encourages impact ionization phenomenon. So the device has improved DRAM characteristics compared with cylinder type 1T DRAM Cell (SGVC Cell). To confirm the memory operation of the cone-type DRAM cell, simulation works were carried out. Also, retention characteristic shows the device can be used practically.

  • Design of High-Performance CMOS Level Converters Considering PVT Variations

    Jinn-Shyan WANG  Yu-Juey CHANG  Chingwei YEH  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:5
      Page(s):
    913-916

    CMOS SoCs can reduce power consumption while maintaining performance by adopting voltage scaling (VS) technologies. The operating speed of the level converter (LC) strongly affects the effectiveness of VS technologies. However, PVT variations can cause serious problems to the LC, because the state-of-the-art LC designs do not give enough attention to this issue. In this work, we proposed to analyze the impact of PVT variations on the performance of the LC using a previously developed heuristic sizing methodology. Based on the evaluation results from different operating corners with different offset voltages and temperatures, we proposed a variation-tolerant LC that achieves both high performance and low energy with a high tolerability for PVT variations.

  • Training Sequence Reduction for the Least Mean Square-Blind Joint Maximum Likelihood Sequence Estimation Co-channel Interference Cancellation Algorithm in OFDM Systems

    Zhenyu ZHOU  Takuro SATO  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:5
      Page(s):
    1173-1183

    Due to the reuse factor reduction, the attendant increase in co-channel interference (CCI) becomes the limiting factor in the performance of the orthogonal frequency division multiplexing (OFDM) based cellular systems. In the previous work, we proposed the least mean square-blind joint maximum likelihood sequence estimation (LMS-BJMLSE) algorithm, which is effective for CCI cancellation in OFDM systems with only one receive antenna. However, LMS-BJMLSE requires a long training sequence (TS) for channel estimation, which reduces the transmission efficiency. In this paper, we propose a subcarrier identification and interpolation algorithm, in which the subcarriers are divided into groups based on the coherence bandwidth, and the slowest converging subcarrier in each group is identified by exploiting the correlation between the mean-square error (MSE) produced by LMS and the mean-square deviation (MSD) of the desired channel estimate. The identified poor channel estimate is replaced by the interpolation result using the adjacent subcarriers' channel estimates. Simulation results demonstrate that the proposed algorithm can reduce the required training sequence dramatically for both the cases of single interference and dual interference. We also generalize LMS-BJMLSE from single antenna to receiver diversity, which is shown to provide a huge improvement.

  • RF Propagation and Channel Modeling for UWB Wearable Devices Open Access

    Kamya YEKEH YAZDANDOOST  Kamran SAYRAFIAN-POUR  Kiyoshi HAMAGUCHI  

     
    INVITED PAPER

      Vol:
    E94-B No:5
      Page(s):
    1126-1134

    Wireless body area network for sensing and monitoring of vital signs is the one of most rapidly growing wireless communication system and Ultra Wide-Band (UWB) is a favorable technology for wearable medical sensors. The wireless body area networks promise to revolutionize health monitoring. However, designers of such systems face a number of challenging tasks. Efficient transceiver design requires in-depth understanding of the propagation media which in this case is the human body surface. The human body is not an ideal medium for RF wave transmission; it is partially conductive and consists of materials of different dielectric constants, thickness and characteristic impedance. The results of the few measurement experiments in recent publications point to varying conclusions in the derived parameters of the channel model. As obtaining large amount of data for many scenarios and use-cases is difficult for this channel, a detailed simulation platform can be extremely beneficial in highlighting the propagation behavior of the body surface and determining the best scenarios for limited physical measurements. In this paper, an immersive visualization environment is presented, which is used as a scientific instrument that gives us the ability to observe three-dimensional RF propagation from wearable medical sensors around a human body. We have used this virtual environment to further study UWB channels over the surface of a human body. Parameters of a simple statistical path-loss model and their sensitivity to frequency and the location of the sensors on the body are discussed.

  • A Non-Iterative Method for Calculating the Effective Capacitance of CMOS Gates with Interconnect Load Effect

    Minglu JIANG  Zhangcai HUANG  Atsushi KUROKAWA  Qiang LI  Bin LIN  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:5
      Page(s):
    1201-1209

    Gate delay evaluation is always a vital concern for high-performance digital VLSI designs. As the feature size of VLSIs decreases to the nano-meter region, the work to obtain an accurate gate delay value becomes more difficult and time consuming than ever. The conventional methods usually use iterative algorithms to ensure the accuracy of the effective capacitance Ceff, which is usually used to compute the gate delay with interconnect loads and to capture the output signal shape of the real gate response. Accordingly, the efficiency is sacrificed. In this paper, an accurate and efficient approach is proposed for gate delay estimation. With the linear relationship of gate output time points and Ceff, a polynomial approximation is used to make the nonlinear effective capacitance equation be solved without iterative method. Compared to the conventional methods, the proposed method improves the efficiency of gate delay calculation. Meanwhile, experimental results show that the proposed method is in good agreement with SPICE results and the average error is 2.8%.

  • On Array Calibration Technique for Multipath Reference Waves

    Hiroyoshi YAMADA  Hiroshi SAKAI  Yoshio YAMAGUCHI  

     
    PAPER-Antennas and Antenna Measurement

      Vol:
    E94-B No:5
      Page(s):
    1201-1206

    High resolution direction-of-arrival (DOA) estimation algorithm for array antennas becomes popular in these days. However, there are several error factors such as mutual coupling among the elements in actual array. Hence array calibration is indispensable to realize intrinsic performance of the algorithm. In the many applications, it is preferable that the calibration can be done in the practical environment in operation. In such a case, the incident wave becomes coherent multipath wave. Calibration of array in the multipath environment is a hard problem, even when DOA of elementary waves is known. To realize array calibration in the multipath environment will be useful for some applications even if reference signals are required. In this report, we consider property of reference waves in the multipath environment and derive a new calibration technique by using the multipath coherent reference waves. The reference wave depends on not only the DOA but also complex amplitude of each elementary wave. However, the proposed technique depends on the DOA only. This is the main advantage of the technique. Simulation results confirm the effectiveness of the proposed technique.

  • Diversity Combination in Multiuser Decode-and-Forward Cooperation with Multiple Shared Relays

    Yubo LI  Qinye YIN  Junsong WANG  Weile ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1491-1494

    In this letter, a multiuser cooperative network with multiple relays is introduced, and two decode-and-forward (DF) cooperation schemes are proposed aiming at outage-optimal and fair user scheduling, respectively. The outage probability and asymptotic expressions of symbol error probability (SEP) are derived to evaluate these two schemes. Analysis and simulations show that both schemes can achieve full diversity order, which is the combination of cooperative diversity and multiuser diversity.

  • Modeling, Verification and Testing of Web Applications Using Model Checker

    Kei HOMMA  Satoru IZUMI  Kaoru TAKAHASHI  Atsushi TOGASHI  

     
    PAPER-Software Development Methodology

      Vol:
    E94-D No:5
      Page(s):
    989-999

    The number of Web applications handling online transaction is increasing, but verification of the correctness of Web application development has been done manually. This paper proposes a method for modeling, verifying and testing Web applications. In our method, a Web application is modeled using two finite-state automata, i.e., a page automaton which specifies Web page transitions, and an internal state automaton which specifies internal state transitions of the Web application. General properties for checking the Web application design are presented in LTL formulae and they are verified using the model checker Spin. Test cases examining the behavior of the Web application are also generated by utilizing the counterexamples obtained as the result of model checking. We applied our method to an example Web application to confirm its effectiveness.

7021-7040hit(18690hit)