The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

8521-8540hit(18690hit)

  • Adaptive Selection of Surviving Symbol Replica Candidates for Quasi-Maximum Likelihood Detection Using M-Algorithm with QR-Decomposition for OFDM MIMO Multiplexing

    Kenichi HIGUCHI  Hiroyuki KAWAI  Hidekazu TAOKA  Noriyuki MAEDA  Mamoru SAWAHASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:4
      Page(s):
    1258-1271

    This paper proposes an adaptive selection algorithm for the surviving symbol replica candidates (ASESS) based on the maximum reliability in maximum likelihood detection with QR decomposition and the M-algorithm (QRM-MLD) for Orthogonal Frequency Division Multiplexing (OFDM) multiple-input multiple-output (MIMO) multiplexing. In the proposed algorithm, symbol replica candidates newly-added at each stage are ranked for each surviving symbol replica from the previous stage using multiple quadrant detection. Then, branch metrics are calculated only for the minimum number of symbol replica candidates with a high level of reliability using an iterative loop based on symbol ranking results. Computer simulation results show that the computational complexity of the QRM-MLD employing the proposed ASESS algorithm is reduced to approximately 1/4 and 1/1200 compared to that of the original QRM-MLD and that of the conventional MLD with squared Euclidian distance calculations for all symbol replica candidates, respectively, assuming the identical achievable average packet error rate (PER) performance in 4-by-4 MIMO multiplexing with 16QAM data modulation. The results also show that 1-Gbps throughput is achieved at the average received signal energy per bit-to-noise power spectrum density ratio (Eb/N0) per receiver antenna of approximately 9 dB using the ASESS algorithm in QRM-MLD associated with 16QAM modulation and Turbo coding with the coding rate of 8/9 assuming a 100-MHz bandwidth for a 12-path Rayleigh fading channel (root mean square (r.m.s.) delay spread of 0.26 µs and maximum Doppler frequency of 20 Hz).

  • Low Cost Time Synchronization Protocol for Wireless Sensor Network

    Ki-Hyeon KIM  Won-Kee HONG  Hie-Cheol KIM  

     
    PAPER

      Vol:
    E92-B No:4
      Page(s):
    1137-1143

    A time synchronization protocol for WSN is required to compensate time discrepancy. Time discrepancy among sensor nodes inevitably happens in WSN due to several internal and external factors. In order to make WSN's own job done effectively, a time synchronization protocol should be designed to achieve low execution time and low network traffic as well as accurate synchronization. Several synchronization protocols have been proposed to provide accurate time synchronization but do not consider execution time and network traffic for time synchronization. This paper proposes MNTP; it provides rapid and accurate time synchronization in multi-hop communication range. It presents a new broadcast scheme and time stamping mechanism to achieve low execution time and low network traffic along with accurate synchronization. Evaluation results show that MNTP improves synchronization accuracy up to 22% in single-hop and 51% in multi-hop respectively. MNTP also has 67 times and 58 times lower execution time and network traffic when 300 nodes are deployed in 2020 m2 sensor field.

  • Enhancements of a Circuit-Level Timing Speculation Technique and Their Evaluations Using a Co-simulation Environment

    Yuji KUNITAKE  Kazuhiro MIMA  Toshinori SATO  Hiroto YASUURA  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    483-491

    A deep submicron semiconductor technology has increased process variations. This fact makes the estimate of the worst-case design margin difficult. In order to realize robust designs, we are investigating such a typical-case design methodology, which we call Constructive Timing Violation (CTV). In the CTV-based design, we can relax timing constraints. However, relaxing timing constraints might cause some timing errors. While we have applied the CTV-based design to a processor, unfortunately, the timing error recovery has serious impact on processor performance. In this paper, we investigate enhancement techniques of the CTV-based design. In addition, in order to accurately evaluate the CTV-based design, we build a co-simulation framework to consider circuit delay at the architectural level. From the co-simulation results, we find the performance penalty is significantly reduced by the enhancement techniques.

  • Generalized Stochastic Collocation Method for Variation-Aware Capacitance Extraction of Interconnects Considering Arbitrary Random Probability

    Hengliang ZHU  Xuan ZENG  Xu LUO  Wei CAI  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    508-516

    For variation-aware capacitance extraction, stochastic collocation method (SCM) based on Homogeneous Chaos expansion has the exponential convergence rate for Gaussian geometric variations, and is considered as the optimal solution using a quadratic model to model the parasitic capacitances. However, when geometric variations are measured from the real test chip, they are not necessarily Gaussian, which will significantly compromise the exponential convergence property of SCM. In order to pursue the exponential convergence, in this paper, a generalized stochastic collocation method (gSCM) based on generalized Polynomial Chaos (gPC) expansion and generalized Sparse Grid quadrature is proposed for variation-aware capacitance extraction that further considers the arbitrary random probability of real geometric variations. Additionally, a recycling technique based on Minimum Spanning Tree (MST) structure is proposed to reduce the computation cost at each collocation point, for not only "recycling" the initial value, but also "recycling" the preconditioning matrix. The exponential convergence of the proposed gSCM is clearly shown in the numerical results for the geometric variations with arbitrary random probability.

  • Privacy Protection by Matrix Transformation

    Weijia YANG  

     
    LETTER-Data Mining

      Vol:
    E92-D No:4
      Page(s):
    740-741

    Privacy preserving is indispensable in data mining. In this paper, we present a novel clustering method for distributed multi-party data sets using orthogonal transformation and data randomization techniques. Our method can not only protect privacy in face of collusion, but also achieve a higher level of accuracy compared to the existing methods.

  • Enhanced Shared-TDD Based Hybrid WDM/TDM-PON with Dynamic Bandwidth Allocation Scheme

    Bokrae JUNG  Min-Gon KIM  Byong-Whi KIM  Minho KANG  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:4
      Page(s):
    1166-1172

    Although wavelength division multiplexing-passive optical network (WDM-PON) is known as a high-speed transfer, it creates high channel costs per subscriber and low bandwidth utilization due to the fact that a wavelength is dedicated to each subscriber. Thus, it is imperative to reduce channel costs per subscriber and improve the bandwidth utilization. To achieve these, we first adopt a existing WDM-PON, which uses the bidirectional transmission with a single source for cost-efficiency by employing a gain-saturated reflective semiconductor optical amplifier (RSOA). Secondly, based on the existing WDM-PON, we propose an enhanced hybrid WDM/TDM-PON, which can extend the number of subscribers supported in each wavelength with splitters in the physical layer and a shared-time division duplex (TDD) frame format in the media access control (MAC) layer. Moreover, it can adaptively control the bandwidth through a dynamic bandwidth allocation (DBA) scheme according to the volume of traffic. Compared to the non TDD-based hybrid WDM/TDM-PON, it can reduce channel costs per subscriber from the extended number of subscribers supported in each wavelength. Furthermore, due to the DBA, it can improve the total queueing delay and throughput, and thus increase the bandwidth utilization.

  • A Performance Isolation Mechanism Based on Fuzzy Technique for Web Server Load Balancing

    Bumjoo PARK  Kiejin PARK  Bongjun KIM  

     
    PAPER

      Vol:
    E92-B No:4
      Page(s):
    1086-1093

    In this study, a performance isolation mechanism based on a fuzzy control technique is developed in such a way that ambiguous situations caused when estimating the workload of cluster-based web servers, client request rates, and dynamic request rates can be represented effectively. The proposed mechanism involving a fuzzy-based technique is compared with a non-fuzzy technique in terms of the response time in the 95th percentile. Experiments showed that the proposed technique improves the performance of web servers that provide differentiated services.

  • Design of Anonymous Attribute Authentication Mechanism

    Shinsaku KIYOMOTO  Kazuhide FUKUSHIMA  Toshiaki TANAKA  

     
    PAPER

      Vol:
    E92-B No:4
      Page(s):
    1112-1118

    Privacy remains an issue for IT services. Users are concerned that their history of service use may be traceable since each user is assigned a single identifier as a means of authentication. In this paper, we propose a perfectly anonymous attribute authentication scheme that is both unidentifiable and untraceable. Then, we present the evaluation results of a prototype system using a PC and mobile phone with the scheme. The proposed scheme employs a self-blindable certificate that a user can change randomly; thus the certificate is modified for each authentication, and the authentication scheme is unidentifiable and untraceable. Furthermore, our scheme can revoke self-blindable certificates without leaks of confidential private information and check the revocation status without online access.

  • Towards an Efficient Flooding Scheme Exploiting 2-Hop Backward Information in MANETs

    Trong Duc LE  Hyunseung CHOO  

     
    PAPER-Network

      Vol:
    E92-B No:4
      Page(s):
    1199-1209

    Flooding is an indispensable operation for providing control or routing functionalities to mobile ad hoc networks (MANETs). Previously, many flooding schemes have been studied with the intention of curtailing the problems of severe redundancies, contention, and collisions in traditional implementations. A recent approach with relatively high efficiency is 1HI by Liu et al., which uses only 1-hop neighbor information. The scheme achieves local optimality in terms of the number of retransmission nodes with time complexity Θ(nlog n), where n is the number of neighbors of a node; however, this method tends to make many redundant transmissions. In this paper, we present a novel flooding algorithm, 2HBI (2-hop backward information), that efficiently reduces the number of retransmission nodes and solves the broadcast storm problem in ad hoc networks using our proposed concept, "2-hop backward information." The most significant feature of the proposed algorithm is that it does not require any extra communication overhead other than the exchange of 1-hop HELLO messages but maintains high deliverability. Comprehensive computer simulations show that the proposed scheme significantly reduces redundant transmissions in 1HI and in pure flooding, up to 38% and 91%, respectively; accordingly it alleviates contention and collisions in networks.

  • An On-Chip Noise Canceller with High Voltage Supply Lines for Nanosecond-Range Power Supply Noise

    Yasumi NAKAMURA  Makoto TAKAMIYA  Takayasu SAKURAI  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    468-474

    An on-chip power supply noise canceller with higher voltage supply and switching transistor is proposed and the effectiveness of the canceller is experimentally verified. The noise canceller is effective for nano-second order noise caused by circuit wakeup or step increase of frequency in frequency hopping. The principle of the noise canceller is to reduce the current flowing through the supply line of VDD by injecting additional current from the higher voltage supply, so that the voltage drop across the VDD supply line is reduced. As additional current flow from higher supply, switching transistor has to be turned off not to increase the power consumption. With turn-off time of 2L/R, this current can be turned off without inducting another droop due to the increase of current flowing through the power supply line. The measurement shows the canceller reduces 68% of the noise with load circuit equivalent to 530 k logic gates in 90-nm CMOS with 9% wire overhead, 1.5% area overhead, and 3% power overhead at 50 k wake-ups/s. Compared to passive noise reduction, proposed noise canceller reduces power supply noise by 64% without wire overhead and to achieve same noise reduction with passive method, 77 times more C or 45 times less L is required. Too large switching transistor results in saturated noise reduction effect and higher power consumption. A rule-of-thumb is to set the on-resistance to supply 100% of load current when turned-on.

  • Reconfigurable AGU: An Address Generation Unit Based on Address Calculation Pattern for Low Energy and High Performance Embedded Processors

    Ittetsu TANIGUCHI  Praveen RAGHAVAN  Murali JAYAPALA  Francky CATTHOOR  Yoshinori TAKEUCHI  Masaharu IMAI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:4
      Page(s):
    1161-1173

    Low energy and high performance embedded processor is crucial in the future nomadic embedded systems design. Improvement of memory accesses, especially improvement of spatial and temporal locality is well known technique to reduce energy and increase performance. However, after transformations that improve locality, address calculation often becomes a bottleneck. In this paper, we propose novel AGU (Address Generation Unit) exploration and mapping technique based on a reconfigurable AGU model. Experimental results show that the proposed techniques help exploring AGU architectures effectively and designers can get trade-offs of real life applications for about 10 hours.

  • Information Distribution Analysis Based on Human's Behavior State Model and the Small-World Network

    Pao SRIPRASERTSUK  Wataru KAMEYAMA  

     
    PAPER-Contents Technology and Web Information Systems

      Vol:
    E92-D No:4
      Page(s):
    608-619

    In this paper, an information distribution model based on human's behavior is proposed. We also propose dynamic parameters to make the model more practical for real life social network. Subsequently, the simulations are conducted based on the small-world network and its characteristics, and the parameters in the model are analyzed to increase efficiently the power of information distribution. Our study and simulation results show that the proposed model can be used to analyze and predict the effectiveness of information distribution. Moreover, the study also shows how to use the model parameters to increase power of the distribution.

  • HSWIS: Hierarchical Shrink-Wrapped Iso-Surface Algorithm

    Young-Kyu CHOI  Eun-Jin PARK  

     
    LETTER-Computer Graphics

      Vol:
    E92-D No:4
      Page(s):
    757-760

    A new hierarchical isosurface reconstruction scheme from a set of tomographic cross sectional images is presented. From the input data, we construct a hierarchy of volume, called the volume pyramid, based on a 3D dilation filter. After extracting the base mesh from the volume at the coarsest level by the cell-boundary method, we iteratively fit the mesh to the isopoints representing the actual isosurface of the volume. The SWIS (Shrink-wrapped isosurface) algorithm is adopted in this process, and a mesh subdivision scheme is utilized to reconstruct fine detail of the isosurface. According to experiments, our method is proved to produce a hierarchical isosurface which can be utilized by various multiresolution algorithms such as interactive visualization and progressive transmission.

  • A Robust 3D Face Recognition Algorithm Using Passive Stereo Vision

    Akihiro HAYASAKA  Koichi ITO  Takafumi AOKI  Hiroshi NAKAJIMA  Koji KOBAYASHI  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1047-1055

    The recognition performance of the conventional 3D face recognition algorithm using ICP (Iterative Closest Point) is degraded for the 3D face data with expression changes. Addressing this problem, we consider the use of the expression-invariant local regions of a face. We find the expression-invariant regions through the distance analysis between 3D face data with the neutral expression and smile, and propose a robust 3D face recognition algorithm using passive stereo vision. We demonstrate efficient recognition performance of the proposed algorithm compared with the conventional ICP-based algorithm through the experiment using a stereo face image database which includes the face images with expression changes.

  • EMI Reduction by Spread-Spectrum Clocking in Digitally-Controlled DC-DC Converters

    Ibuki MORI  Yoshihisa YAMADA  Santhos A. WIBOWO  Masashi KONO  Haruo KOBAYASHI  Yukihiro FUJIMURA  Nobukazu TAKAI  Toshio SUGIYAMA  Isao FUKAI  Norihisa ONISHI  Ichiro TAKEDA  Jun-ichi MATSUDA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1004-1011

    This paper proposes spread-spectrum clock modulation algorithms for EMI reduction in digitally-controlled DC-DC converters. In switching regulators using PWM, switching noise and harmonic noise concentrated in a narrow spectrum around the switching frequency can cause severe EMI. Spread-spectrum clock modulation can be used to minimize EMI. In conventional switching regulators using analog control it is very difficult to realize complex spread-spectrum clocking, however this paper shows that it is relatively easy to implement spread-spectrum EMI-reduction using digital control. The proposed algorithm was verified using a power converter simulator (SCAT).

  • Compactness of Family of Fuzzy Sets in L2 Space with Application to Optimal Control

    Takashi MITSUISHI  Yasunari SHIDAMA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    952-957

    The optimization of nonlinear feedback fuzzy system using the product-sum-gravity method is described in this paper. The fuzzy control discussed here is the nonlinear feedback control in which the feedback laws are determined by IF-THEN type fuzzy production rules through product-sum-gravity method. To prove existence of optimal control, we applied compactness of a set of membership functions in L2 space and continuity of the approximate reasoning, and prepared some propositions concerning product-sum-gravity method. By considering fuzzy optimal control problems as problems of finding the minimum (maximum) value of the integral cost (benefit) function on an appropriate set of membership functions, the existence of fuzzy optimal control is shown.

  • A Goal Programming Approach for Resource Allocation Considering Client Demands in a Multiuser OFDMA Downlink System

    Younggoo HAN  Woochul SHIM  Sehun KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:4
      Page(s):
    1376-1379

    This study investigates subcarrier and power allocation schemes in an OFDMA downlink system. To consider client demands, a goal programming approach is proposed. The proposed algorithm minimizes the weighted sum of each client's dissatisfaction index. Simulations show that the sum of dissatisfaction indices can be reduced significantly.

  • Construction of Self-Stabilizing k Disjoint Sense-Sleep Trees with Application to Sensor Networks

    Jun KINIWA  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E92-A No:4
      Page(s):
    1174-1181

    Sensor networks have promising applications such as battlefield surveillance, biological detection, and emergency navigation, etc. Crucial problems in sensor networks are energy-efficiency and collision avoidance in wireless communication. To deal with the problems, we consider a self-stabilizing solution to the construction of k disjoint sense-sleep trees, where range adjustment and the use of GPS are allowed. Each root is determined by its identifier and is distinguished by its color, the identification of a tree. Using a dominating k-partition rule, each non-root node first determines a color irrelevant to the root. Then, the non-root node determines a parent node that is equally colored with minimal distance. If there is no appropriate parent, the range is extended or shrunk until the nearest parent is determined. Finally, we perform a simulation.

  • An Efficient Algorithm for RTL Power Macro-Modeling and Library Building

    Masaaki OHTSUKI  Masato KAWAI  Masahiro FUKUI  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    500-507

    Accompanying with the popularization of portable equipments, and the rapid growth of the size of the electric systems, efficient low power design methodologies have been highly required. To satisfy these requests, a high accurate and high efficient power analysis in higher abstraction level is very important. The design environment is composed by efficient algorithms of power modeling, power library building, and data extracting. Those components of the environment should be balanced for the total efficiency and accuracy. We have proposed a new efficient power modeling environment which uses a look-up table (LUT). It reduces the size of the LUT drastically, compared to conventional algorithms. It makes the power analysis and library building high efficient. The experimental results show that our approach reduces the computation time to build the library to one tenth while keeping the accuracy of the power analysis. The RMS error and the largest error has been less than 8.30%, 59.16%, respectively.

  • Call Admission Control Scheme Based on Statistical Information

    Takayuki FUJIWARA  Eiji OKI  Kohei SHIOMOTO  

     
    LETTER-Network

      Vol:
    E92-B No:4
      Page(s):
    1361-1364

    A call admission control (CAC) scheme based on statistical information is proposed, called the statistical CAC scheme. A conventional scheme needs to manage session information for each link to update the residual bandwidth of a network in real time. This scheme has a scalability problem in terms of network size. The statistical CAC rejects session setup requests in accordance to a pre-computed ratio, called the rejection ratio. The rejection ratio is computed by using statistical information about the bandwidth requested for each link so that the congestion probability is less than an upper bound specified by a network operator. The statistical CAC is more scalable in terms of network size than the conventional scheme because it does not need to keep accommodated session state information. Numerical results show that the statistical CAC, even without exact session state information, only slightly degrades network utilization compared with the conventional scheme.

8521-8540hit(18690hit)