The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

6921-6940hit(20498hit)

  • CMOS Differential Circuits Using Charge-Redistribution and Reduced-Swing Schemes

    Hong-Yi HUANG  Shiun-Dian JAN  Yang CHOU  Cheng-Yu CHEN  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:2
      Page(s):
    275-283

    The charge-redistribution low-swing differential logic (CLDL) circuits are presented in this work. It can implement a complex function in a single gate. The CLDL circuits utilizes the charge-redistribution and reduced-swing schemes to reduce the power dissipation and enhance the operation speed. In addition, a pipeline structure is formed by a series connection structure controlled by a true-single-phase clock, thereby achieving high-speed operation. The CLDL circuits perform more than 25% speedup and 31% in power-delay product compared to other differential circuits with true-single-phase clock. A pipelined multiplier-accumulator (MAC) using CLDL structure is fabricated in 0.35 µm single-poly four-metal CMOS process. The test chip is successfully verified to operate at 900-MHz.

  • Low Complexity Compensation of Frequency Dependent I/Q Imbalance and Carrier Frequency Offset for Direct Conversion Receivers

    Leonardo LANANTE, Jr.  Masayuki KUROSAKI  Hiroshi OCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    484-492

    Conventional algorithms for the joint estimation of carrier frequency offset (CFO) and I/Q imbalance no longer work when the I/Q imbalance depends on the frequency. In order to correct the imbalance across many frequencies, the compensator needed is a filter as opposed to a simple gain and phase compensator. Although, algorithms for estimating the optimal coefficients of this filter exist, their complexity is too high for hardware implementation. In this paper we present a new low complexity algorithm for joint estimation of CFO and frequency dependent I/Q imbalance. For the first part, we derive the estimation scheme using the linear least squares algorithm and examine its floating point performance compared to conventional algorithms. We show that the proposed algorithm can completely eliminate BER floor caused by CFO and I/Q imbalance at a lesser complexity compared to conventional algorithms. For the second part, we examine the hardware complexity in fixed point hardware and latency of the proposed algorithm. Based on BER performance, the circuit needs a wordlength of at least 16 bits in order to properly estimate CFO and I/Q imbalance. In this configuration, the circuit is able to achieve a maximum speed of 115.9 MHz in a Virtex 5 FPGA.

  • Athermal Wavelength Filters toward Optical Interconnection to LSIs

    Yuki ATSUMI  Manabu ODA  Joonhyun KANG  Nobuhiko NISHIYAMA  Shigehisa ARAI  

     
    PAPER

      Vol:
    E95-C No:2
      Page(s):
    229-236

    Photonic integrated circuits (PICs) produced by large-scale integration (LSI) on Si platforms have been intensively researched. Since thermal diffusion from the LSI logic layer is a serious obstacle to realizing a Si-based optical integrated circuit, we have proposed and realized athermal wavelength filters using Si slot waveguides embedded with benzocyclobutene (BCB). First, the athermal conditions were theoretically investigated by controlling the waveguide and gap width of the slot waveguides. In order to introduce the calculated waveguide structures to wavelength filters, the propagation losses and bending losses of the Si slot waveguides were evaluated. The propagation losses were measured to be 5.6 and 5.3 dB/cm for slot waveguide widths of 500 and 700 nm, respectively. Finally, athermal wavelength filters, a ring resonator, and a Mach-Zhender interferometer (MZI) with a slot waveguide width of 700 nm were designed and fabricated. Further, a temperature coefficient of -0.9 pm/K for the operating wavelength was achieved with the athermal MZI.

  • Diversity-Multiplexing Tradeoff Analysis for a Dynamic Decode and Forward Relay Protocol with MIMO Channels

    Taeyoung KIM  Sun-Yong KIM  Eunchul YOON  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    329-332

    In this letter, the diversity-multiplexing tradeoff (DMT) function for a special half-duplex dynamic decode and forward (DDF) relay protocol using two source-antennas, two destination-antennas, and more than two relay-antennas is derived. It is shown that the performance of the DDF relay protocol can be substantially improved by increasing the relay-antenna number, but only for low multiplexing gains.

  • TE Plane Wave Reflection and Transmission from a Two-Dimensional Random Slab – Slanted Fluctuation –

    Yasuhiko TAMURA  

     
    PAPER-Random Media and Rough Surfaces

      Vol:
    E95-C No:1
      Page(s):
    36-43

    This paper deals with reflection and transmission of a TE plane wave from a two-dimensional random slab with slanted fluctuation by means of the stochastic functional approach. Such slanted fluctuation of the random slab is written by a homogeneous random field having a power spectrum with a rotation angle. By starting with the previous paper [IEICE Trans. Electron., Vol. E92-C, no.1, pp.77–84, January 2009], any statistical quantities are immediately obtained even for slanted fluctuation cases. The first-order incoherent scattering cross section is numerically calculated and illustrated in figures. It is then newly found that shift and separation phenomena of the leading or enhanced peaks at four characteristic scattering angles take place in the transmission and reflection sides, respectively.

  • A Multiband Monopole Antenna with Modified Fractal Loop Parasitic for DCS 1800, WLAN, WiMAX and IMT Advanced Systems

    Chatree MAHATTHANAJATUPHAT  Norakamon WONGSIN  Prayoot AKKARAEKTHALIN  

     
    PAPER-Antennas

      Vol:
    E95-B No:1
      Page(s):
    27-33

    A multiband monopole antenna with modified fractal loop parasitic is presented. Especially, bow-tie stubs and a modified fractal loop are attached to the sides and bottom of a strip line monopole antenna, respectively, in order to generate the multi-resonant frequencies for the applications of wireless communication systems. The characteristics of the presented antenna have been examined by using the simulation software. The comparison between the simulated and measured results confirms the good agreement. The results show good multiband operation with 10 dB impedance bandwidths of 15.55%, 8.75%, and 31.94% at the resonant frequencies of 1.8 GHz, 2.4 GHz, and 3.6 GHz, respectively, which cover the operating band applications of DCS 1800, WLAN (IEEE802.11 b/g), WiMAX, and IMT advanced system (4G mobile communication system).

  • On-Chip In-Place Measurements of Vth and Signal/Substrate Response of Differential Pair Transistors

    Yoji BANDO  Satoshi TAKAYA  Toru OHKAWA  Toshiharu TAKARAMOTO  Toshio YAMADA  Masaaki SOUDA  Shigetaka KUMASHIRO  Tohru MOGAMI  Makoto NAGATA  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:1
      Page(s):
    137-145

    In-place AC measurements of the signal gain and substrate sensitivity of differential pair transistors of an analog amplifier are combined with DC characterization of the threshold voltage (Vth) of the same transistors. An on-chip continuous time waveform monitoring technique enables in-place matrix measurements of differential pair transistors with a variety of channel sizes and geometry, allowing the wide coverage of experiments about the transistor-level physical layout dependency of substrate noise response. A prototype test structure uses a 90-nm CMOS technology and demonstrates the geometry-dependent variation of substrate sensitivity of transistors in operation.

  • Proper Derivation of Equivalent-Circuit Expressions of Intra-Body Communication Channels Using Quasi-Static Field

    Nozomi HAGA  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas

      Vol:
    E95-B No:1
      Page(s):
    51-59

    Physical channels of the intra-body communications, in which communications are performed by exciting electric field around the human body, have been treated as a capacitive circuit from the beginning of the development. Although the circuit-like understanding of the channels are helpful to design devices and systems, there is a problem that the results may be invalid if the circuit parameters are incorrectly estimated. In the present study, the values of the circuit parameters are properly derived by solving a boundary value problem of electric potentials of the conductors. Furthermore, approximate models which are appropriate for cases that some of the conductors are grounded are investigated.

  • High Efficiency Control Method for the Hall Thruster System through Constant Flow Rate Control by Power Supply Control

    Hiroyuki OSUGA  Fujio KUROKAWA  Taichiro TAMIDA  Naoji YAMAMOTO  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E95-B No:1
      Page(s):
    133-142

    We present a new power supply control method, which achieves constant flow Rate control for the thrust of a 20 mN-class Hall thruster. First, we present observations of a 20 mN-class Hall thruster with oscillation-mode-map. We make a theoretical study of the thrust and experiments on electrical characteristics of the Hall thruster, and conclude that thrust, thrust efficiency and low frequency oscillation are clearly determined by the external control parameters, anode voltage, gas flow rate, and magnetic flux density. Second, we discuss how to control the power supplies to suppress the power consumption, especially when the operation or thruster conditions change temporarily during use. The new method will be a very important guideline for Hall thruster system design and operation, in particular making it easy to manage the power consumption in a satellite by controlling the thrust resources. As a result of performance experiments for a 20 mN-class Hall thruster, over 36% thrust efficiency of the Hall thruster was found to be sensitive to the anode voltage and applied magnetic flux density. The new power control method achieves constant flow rate control method of the thrust. The benefits are light weight and low cost.

  • Sampling and Reconstruction of Periodic Piecewise Polynomials Using Sinc Kernel

    Akira HIRABAYASHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:1
      Page(s):
    322-329

    We address a problem of sampling and reconstructing periodic piecewise polynomials based on the theory for signals with a finite rate of innovation (FRI signals) from samples acquired by a sinc kernel. This problem was discussed in a previous paper. There was, however, an error in a condition about the sinc kernel. Further, even though the signal is represented by parameters, these explicit values are not obtained. Hence, in this paper, we provide a correct condition for the sinc kernel and show the procedure. The point is that, though a periodic piecewise polynomial of degree R is defined as a signal mapped to a periodic stream of differentiated Diracs by R + 1 time differentiation, the mapping is not one-to-one. Therefore, to recover the stream is not sufficient to reconstruct the original signal. To solve this problem, we use the average of the target signal, which is available because of the sinc sampling. Simulation results show the correctness of our reconstruction procedure. We also show a sampling theorem for FRI signals with derivatives of a generic known function.

  • Joint Design of Uplink-Downlink MIMO Relay Networks Using Duality

    Seungwon CHOI  Jung-Hyun PARK  Seokkwon KIM  Dong-Jo PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    333-336

    This letter introduces a joint design method for uplink-downlink multiple-input multiple-output (MIMO) relay communication systems in which the source nodes transmit information to the destination nodes with the help of a relay. We propose a signal forwarding schceme based on the minimum mean-square error (MMSE) approach in uplink relay systems. Exploiting the duality of relay systems, we also propose a relaying scheme for downlink relay systems. Simulation results confirm that the proposed joint design method improves the performance of the relay systems compared with that of conventional relaying schemes in uplink and downlink MIMO relay systems.

  • Software Protection Combined with Tamper-Proof Device

    Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  Yutaka MIYAKE  

     
    PAPER-Software Protection

      Vol:
    E95-A No:1
      Page(s):
    213-222

    Establishment of a practical software protection method is a major issue in software distribution. There are several approaches to the issue; however, no practical, secure method for mobile phone applications has been proposed. In this paper, we propose a new software protection scheme combined with a tamper-proof device (TPD) in order to achieve computational security against illegal analysis and copying of the target program. Our scheme achieves a reasonable level of security for encoding the data and variables in a program. The program on a mobile phone deals only with encoded data that is difficult to compromise, and the TPD plays a role of decoding execution results. We implemented the proposed scheme on a 3G mobile phone and a user identification module (UIM). An analysis and copying of the protected program impose exponential computation complexities under our attack model.

  • A Single-Supply 84 dB DR Audio-Band ADC for Compact Digital Microphones

    Huy-Binh LE  Sang-Gug LEE  Seung-Tak RYU  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:1
      Page(s):
    130-136

    A 20 kHz audio-band ADC with a single pair of power and ground pads is implemented for a digital electret microphone. Under the limited power/ground pad condition, the switching noise effect on the signal quality is estimated via post simulations with parasitic models. Performance degradation is minimized by time-domain noise isolation with sufficient time-spacing between the sampling edge and the output transition. The prototype ADC was implemented in a 0.18 µm CMOS process. It operates under a minimum supply voltage of 1.6 V with total current of 420 µA. Operating at 2.56 MHz clock frequency, it achieves 84 dB dynamic range and a 64 dB peak signal-to-(noise+distortion) ratio. The measured power supply rejection at a 100 mVpp 217 Hz square wave is -72 dB.

  • Optimization of Field Decomposition for a Mode Matching Technique

    Shinichiro OHNUKI  Takahisa MOCHIZUKI  Kenichiro KOBAYASHI  Tsuneki YAMASAKI  

     
    BRIEF PAPER-Scattering and Diffraction

      Vol:
    E95-C No:1
      Page(s):
    101-104

    We introduce a novel method to optimize field decomposition for a mode matching technique. Using our method, expanded mode numbers can be minimized to achieve the desired digits of computational accuracy.

  • Underground Electric Signal at the Occurrence of the Niigataken Chuetsu-oki Earthquake in 2007, Japan

    Kan OKUBO  Akihiro TAKEUCHI  Yukinobu NAKAMURA  Nobunao TAKEUCHI  

     
    BRIEF PAPER-Electromagnetic Compatibility

      Vol:
    E95-C No:1
      Page(s):
    110-114

    The electric field mill in our underground observation room detected a co-seismic electromagnetic signal in the vertical electrostatic field ca. 8 s after the origin time of the Niigataken Chuetsu-oki Earthquake in 2007, but ca. 30 s before the arrival time of the P-waves.

  • A Class of 1-Resilient Functions in Odd Variables with High Nonlinearity and Suboptimal Algebraic Immunity

    Yusong DU  Fangguo ZHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:1
      Page(s):
    417-420

    Based on Tu-Deng's conjecture and the Tu-Deng function, in 2010, X. Tang et al. proposed a class of Boolean functions in even variables with optimal algebraic degree, very high nonlinearity and optimal algebraic immunity. In this corresponding, we consider the concatenation of Tang's function and another Boolean function, and study its cryptographic properties. With this idea, we propose a class of 1-resilient Boolean functions in odd variables with optimal algebraic degree, good nonlinearity and suboptimal algebraic immunity based on Tu-Deng's conjecture.

  • Further More on Key Wrapping

    Yasushi OSAKI  Tetsu IWATA  

     
    PAPER-Symmetric Cryptography

      Vol:
    E95-A No:1
      Page(s):
    8-20

    Constructing a secure and efficient key wrapping scheme is demanding, and the scheme based on a universal hash function and an elementary encryption mode like ECB and CBC modes is potential for a practical use. However, at SAC 2009, Gennaro and Halevi showed that a key wrapping scheme using a universal hash function and ECB mode (a HtECB scheme) is broken, and the security of a scheme based on a universal hash function and CBC mode (a HtCBC scheme) has been left as an open problem. In this paper, we first generalize classical notions of universal and uniform hash functions, and propose a total of four new notions of the keyed hash function. We then prove that HtECB and HtCBC schemes are secure key wrapping schemes if the universal hash function satisfies uniformity and our notions, where the result on the HtCBC scheme gives a partial answer to the open problem. Then we discuss a basic problem of identifying relations between various notions of a keyed hash function, and point out that a monic polynomial hash function satisfies all the new notions.

  • SAR-Probe Calibration System Using Reference Dipole Antenna in Tissue-Equivalent Liquid

    Nozomu ISHII  Yukihiro MIYOTA  Ken-ichi SATO  Lira HAMADA  Soichi WATANABE  

     
    PAPER-Antenna Measurement

      Vol:
    E95-B No:1
      Page(s):
    60-68

    The probe used in the conventional SAR measurement is usually calibrated in a well filled with tissue-equivalent liquid surrounded by a rectangular waveguide and a matching dielectric window in the frequency range from 800 MHz to 3 GHz. However, below 800 MHz, the waveguides are too large to be used for the calibration. Therefore, we have developed another technique of calibrating the SAR-probe, that is, relating the output voltage of the probe to the field intensity produced by a reference antenna in the tissue-equivalent liquid by using two-antenna method. In this paper, the calibration system using the reference dipole antennas in the liquid at 450 MHz, 900 MHz and 2450 MHz is presented and far-field gain of the reference antenna and calibration factor of the SAR-probe are measured and compared with those obtained by using the conventional waveguide system.

  • Design and Fabrication of PTFE-Filled Waveguide Components by SR Direct Etching

    Mitsuyoshi KISHIHARA  Hiroaki IKEUCHI  Yuichi UTSUMI  Tadashi KAWAI  Isao OHTA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E95-C No:1
      Page(s):
    122-129

    The metallic waveguide is one of many effective media for millimeter- and submillimeter-waves because of the advantage of its low-loss nature. This paper describes the fabrication method of PTFE-filled waveguide components with the use of the SR (synchrotron radiation) direct etching process of PTFE, sputter deposition of metal, and electroplating. PTFE is known as a difficult material to process with high precision. However, it has been reported that PTFE microstructures can be fabricated by the direct exposure to SR. First, an iris-coupled waveguide BPF with 5-stage Chebyshev response is designed and fabricated for the Q-band. It is demonstrated that the present process is applicable for the fabrication of the practical components inclusive of narrow patterns. Then, a cruciform 3 dB coupler with air-filled posts is designed and fabricated for the Q-band. Directivity and matched state of the coupler can be realized by “holes” in the dielectric material. The measurement results are also shown.

  • Meet-in-the-Middle (Second) Preimage Attacks on Two Double-Branch Hash Functions RIPEMD and RIPEMD-128

    Lei WANG  Yu SASAKI  Wataru KOMATSUBARA  Kazuo SAKIYAMA  Kazuo OHTA  

     
    PAPER-Hash Function

      Vol:
    E95-A No:1
      Page(s):
    100-110

    Even though meet-in-the-middle preimage attack framework has been successfully applied to attack most of narrow-pipe hash functions, it seems difficult to apply this framework to attack double-branch hash functions. Only few results have been published on this research. This paper proposes a refined strategy of applying meet-in-the-middle attack framework to double-branch hash functions. The main novelty is a new local-collision approach named one-message-word local collision. We have applied our strategy to two double-branch hash functions RIPEMD and RIPEMD-128, and obtain the following results.·On RIPEMD. We find a pseudo-preimage attack on 47-step compression function, where the full version has 48 steps, with a complexity of 2119. It can be converted to a second preimage attack on 47-step hash function with a complexity of 2124.5. Moreover, we also improve previous preimage attacks on (intermediate) 35-step RIPEMD, and reduce the complexity from 2113 to 296. ·On RIPEMD-128. We find a pseudo-preimage on (intermediate) 36-step compression function, where the full version has 64 steps, with a complexity of 2123. It canl be converted to a preimage attack on (intermediate) 36-step hash function with a complexity of 2126.5. Both RIPEMD and RIPEMD-128 produce 128-bit digests. Therefore our attacks are faster than the brute-force attack, which means that our attacks break the theoretical security bound of the above step-reduced variants of those two hash functions in the sense of (second) preimage resistance. The maximum number of the attacked steps on both those two hash functions is 35 among previous works based to our best knowledge. Therefore we have successfully increased the number of the attacked steps. We stress that our attacks does not break the security of full-version RIPEMD and RIPEMD-128. But the security mergin of RIPEMD becomes very narrow. On the other hand, RIPEMD-128 still has enough security margin.

6921-6940hit(20498hit)