The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

2801-2820hit(8214hit)

  • A Virtual Layered Successive Detector with Adaptive Transmit Signal Phase Rotation for QAM

    Satoshi DENNO  Jun IMAMURA  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3232-3241

    This paper proposes a virtual layered successive detector with adaptive transmit signal phase rotation for quadrature amplitude modulation (QAM) that enables high speed communication even in downlinks of wireless communication systems. It is shown that the detection performance is degraded when the eigenvalue of a virtual channel becomes close to the power of the additive white Gaussian noise (AWGN). Therefore, adaptive transmit signal phase rotation is introduced for the detector to improve the transmission performance. For the transmit phase rotation, three techniques to search the rotation angles are proposed, which can reduce the feedback information from the receiver to the transmitter. Among the three proposed techniques, the technique called “iterative variable step step search” is shown to achieve the best performance. Actually, it is confirmed by computer simulation that the variable step search makes the detector attain about 17 dB of a gain at the bit error rate (BER) of 10-5 in 42 multiple-input-multiple-output (MIMO) systems.

  • Conjugate-Gradient Based Doubly Selective Channel Estimation and Equalization for OFDM Systems

    Dongjae LEE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:10
      Page(s):
    3252-3260

    This paper addresses conjugate-gradient (CG) based pilot-assisted channel estimation and equalization in doubly selective channels for orthogonal frequency division multiplexing (OFDM) block transmissions. With the help of the discrete prolate spheroidal sequence, which shows flat mean-square error (MSE) curves for the reconstructed channels in the presence of Doppler frequency mismatch, a basis expansion model for a parsimonious channel representation over multiple OFDM blocks is developed, a system equation for the least square channel estimation under widely used pilot lattices, where the pilot symbols are irregularly placed in the subcarrier domain, is formulated by introducing carving matrices, and the standard CG method is applied to the system. Relying on the CG method again, the linear minimum mean-square error channel equalization is pursued without performing any matrix inversion, while elevating the convergence speed of the iterative algorithm with a simple preconditioner. Finally, we validate our schemes with numerical experiments on the integrated services digital broadcasting-terrestrial system in doubly-selective channels and determine the normalized MSE and uncoded bit error rate.

  • Miniaturized Antenna with High Radiation Efficiency Using Ground and Chip Capacitors

    Hyengcheul CHOI  Kyung-Young JUNG  Hyeongdong KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:10
      Page(s):
    3328-3331

    Ground antennas are suitable for use in mobile electronic devices due to their compactness. These ground antennas incorporate two capacitors for controlling the resonance frequency and a shorting loop for impedance matching. In this work, we compare the performance of a ground antenna with that of a meandered inverted-F antenna (IFA). It is numerically and experimentally shown that a ground antenna can yield simultaneous improvements in both the antenna size and radiation efficiency when compared to the meandered IFA. The bandwidth of the ground antenna for a voltage standing wave ratio (VSWR) of 3:1 is 240 MHz from 2350 MHz to 2590 MHz, while the minimum total antenna efficiency is 62% within the 2.4 GHz ISM band.

  • Mode-Matching Analysis for Circular and Annular Aperture Scattering Open Access

    Hyo Joon EOM  Young Seung LEE  

     
    INVITED PAPER

      Vol:
    E95-C No:10
      Page(s):
    1566-1571

    The mode-matching applications to scattering from circular and annular apertures in a thick perfectly conducting plane are reviewed. The Hankel and Weber transforms are utilized to solve the boundary-value problems of circular and annular apertures. Simple electrostatic problems are presented to illustrate the mode-matching method in terms of the Hankel and Weber transforms. Various types of Weber transform are discussed with boundary-value problems. Electromagnetic radiation and scattering from circular and annular aperture geometries are summarized. The utility of the mode-matching method in circular and annular aperture scattering is emphasized.

  • A Miniaturized 2.5 GHz 8 W GaN HEMT Power Amplifier Module Using Selectively Anodized Aluminum Oxide Substrate

    Hae-Chang JEONG  Kyung-Whan YEOM  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1580-1588

    In this paper, the design and fabrication of a miniaturized class-F 2.5 GHz 8 W power amplifier using a commercially available GaN HEMT bare chip from TriQuint and a Selectively Anodized Aluminum Oxide (SAAO) substrate are presented. The SAAO process was recently proposed and patented by Wavenics Inc., Daejeon, Korea, which provides the fabrication of small size circuit comparable to conventional MMIC and at drastically low cost due to the use of aluminum as a wafer. The advantage of low cost is especially promising for RF components fabrication in commercial applications like mobile communications. The fabricated power amplifier has a compact size of 4.4 4.4 mm2 and shows power added efficiency (PAE) of about 35% and harmonic suppression of above 30 dBc for second and third harmonics at an output power of 39 dBm.

  • OpenGL SC Implementation on the OpenGL Hardware

    Nakhoon BAEK  Hwanyong LEE  

     
    LETTER-Computer Graphics

      Vol:
    E95-D No:10
      Page(s):
    2589-2592

    The need for the OpenGL-family of the 3D rendering API's are highly increasing, especially for graphical human-machine interfaces on various systems. In the case of safety-critical market for avionics, military, medical and automotive applications, OpenGL SC, the safety critical profile of the OpenGL standard plays the major role for graphical interfaces. In this paper, we present an efficient way of implementing OpenGL SC 3D graphics API for the environments with hardware-supported OpenGL 1.1 and its multi-texture extension facility, which is widely available on recent embedded systems. Our approach achieved the OpenGL SC features at the low development cost on the embedded systems and also on general personal computers. Our final result shows its compliance with the OpenGL SC standard specification. From the efficiency point of view, we measured its execution times for various application programs, to show a remarkable speed-up.

  • Experimental Verifications of Left-Handed Characteristics of 3-D Left-Handed Metamaterial Composed of Periodic Wired Metallic Spheres

    Tsunayuki YAMAMOTO  Atsushi SANADA  Hiroshi KUBO  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1652-1657

    The left-handed (LH) operation of a three-dimensional (3-D) LH material composed of wired metallic spheres is experimentally confirmed. A 15153-cell periodic structure designed to have an isotropic LH characteristics is fabricated by a 3-D printer with post plating technology, and near-field measurements of refracted waves by the negative refractive index slab lens are carried out. The dispersion characteristics measured from the near-field distributions on the surface of the LH material clearly show that the structure supports the backward waves at 12 GHz band. It is also shown experimentally that the resolution of the slab lens exceeds the diffraction limit by near field measurements with a single source and adjacent two sources. In addition, near-field measurements from the LH material near the Γ-point frequency at 12.90 GHz are carried out. A highly directive plane wave with a single point source is observed and the near-zero-index operation has been confirmed.

  • A 60 GHz CMOS Transceiver IC for a Short-Range Wireless System with Amplitude/Phase Imbalance Cancellation Technique

    Koji TAKINAMI  Junji SATO  Takahiro SHIMA  Mitsuhiro IWAMOTO  Taiji AKIZUKI  Masashi KOBAYASHI  Masaki KANEMARU  Yohei MORISHITA  Ryo KITAMURA  Takayuki TSUKIZAWA  Koichi MIZUNO  Noriaki SAITO  Kazuaki TAKAHASHI  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1598-1609

    A 60 GHz direct conversion transceiver which employs amplitude/phase imbalance cancellation technique is newly proposed. By using the proposed technique, the receive path of the transceiver achieves less than 0.2 dB of amplitude error and less than 3 of phase error at 60 GHz bands over a 10 GHz bandwidth, which relaxes the design accuracy required for baluns used in the transceiver. It also employs a simple and fast calibration algorithm to adjust the locking range of the divide-by-3 injection locked divider in the phase locked loop. Fabricated in 90 nm CMOS technology, the transceiver achieves a low power consumption of 230 mW in transmit mode and 173 mW in receive mode. The output spectrum of 1.76 Gsps π/2-BPSK/QPSK modulation shows the excellent distortion and spurious suppression that meet the IEEE802.11ad draft standard.

  • Node Redeployment for Effective Prolong Maintenance Period in Wireless Sensor Networks

    ChengDong WU  Long CHENG  YunZhou ZHANG  

     
    PAPER-Network

      Vol:
    E95-B No:10
      Page(s):
    3179-3186

    In this paper, two efficient redeployment strategies which are designed to balance the detection coverage rate and maintenance period are proposed. To develop these strategies, we first analyze the sensor detection coverage and energy consumption model. We then propose a network maintenance indicator that considers the coverage rate and residual energy in each node. We adopt the network maintenance indicator as the cost function. That is, the network maintenance is formulated as a cost optimization problem. Finally we propose COST_MAX_MIN and COST_MAX_AVG strategies to select the redeployed location of candidate nodes. Simulation results show that the COST_MAX_AVG prolong the repair period in comparison with the COST_MAX_MIN strategy.

  • A Ring-VCO-Based Injection-Locked Frequency Multiplier with Novel Pulse Generation Technique in 65 nm CMOS

    Sangyeop LEE  Norifumi KANEMARU  Sho IKEDA  Tatsuya KAMIMURA  Satoru TANOI  Hiroyuki ITO  Noboru ISHIHARA  Kazuya MASU  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1589-1597

    This paper proposes a low-phase-noise ring-VCO-based frequency multiplier with a new subharmonic direct injection locking technique that only uses a time-delay cell and four MOS transistors. Since the proposed technique behaves as an exclusive OR and can double the reference signal frequency, it increases phase correction points and achieves low phase noise characteristic across the wide output frequency range. The frequency multiplier was fabricated by using 65 nm Si CMOS process. Measured 1-MHz-offset phase noise at 6.34 GHz with reference signals of 528 MHz was -119 dBc/Hz.

  • Active Learning Using Phone-Error Distribution for Speech Modeling

    Hiroko MURAKAMI  Koichi SHINODA  Sadaoki FURUI  

     
    PAPER-Speech and Hearing

      Vol:
    E95-D No:10
      Page(s):
    2486-2494

    We propose an active learning framework for speech recognition that reduces the amount of data required for acoustic modeling. This framework consists of two steps. We first obtain a phone-error distribution using an acoustic model estimated from transcribed speech data. Then, from a text corpus we select a sentence whose phone-occurrence distribution is close to the phone-error distribution and collect its speech data. We repeat this process to increase the amount of transcribed speech data. We applied this framework to speaker adaptation and acoustic model training. Our evaluation results showed that it significantly reduced the amount of transcribed data while maintaining the same level of accuracy.

  • BTRB: Beam Table-Based Reliable Broadcast for Directional Antennas

    Laihyuk PARK  Jeongseok YU  Chan-Gun LEE  Sungrae CHO  

     
    LETTER-Network

      Vol:
    E95-B No:10
      Page(s):
    3307-3311

    Directional antennas provide numerous benefits, such as higher gains, increased transmission range, and lower interferences. In this paper, we propose a reliable broadcast protocol for directional antenna referred to as beam table-based reliable broadcast for directional antennas (BTRB). The BTRB employs (1) ACK-based scheme to provide full reliability; (2) spatio-temporal ACK combination to resolve the problems of ACK implosion and transmission delay; and (3) beam table caching to represent spatial relationship among destination nodes in the broadcast group. Performance evaluation has shown that the proposed BTRB shows full reliability and outperforms existing reliable broadcast schemes with respect to transmission delay by about 55%.

  • Accurate 3-Dimensional Imaging Method Based on Extended RPM for Rotating Target Model

    Shouhei KIDERA  Hiroyuki YAMADA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:10
      Page(s):
    3279-3289

    Three-dimensional (3-D) reconstruction techniques employed by airborne radars are essential for object recognition in scenarios where optically vision is blurry, and are required for the monitoring of disasters and coast-guard patrols. There have been reports on 3-D reconstruction methods that exploit the layover appearing in inverse synthetic aperture radar (ISAR) imagery, which are suitable for the recognition of artificial targets such as buildings, aircraft or ships. However, existing methods assume only a point target or the aggregate of point targets, and most require the tracking of the multiple points over sequential ISAR images. In the case of a solid object with a continuous boundary, such as a wire or polyhedral structure, the positioning accuracy of such methods is severely degraded owing to scattering centers continuously shifting on the target surface with changes in the rotation angle. To overcome this difficulty, this paper extends the original Range Points Migration (RPM) method to the ISAR observation model, where a double mono-static model with two transmitting and receiving antennas is introduced to suppress cross-range ambiguity. The results of numerical simulation and experimental validation demonstrate that the extended RPM method has a distinct advantage for accurate 3-D imaging, even for non-point targets.

  • Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy for Speech Enhancement

    Yun-Sik PARK  Sangmin LEE  

     
    LETTER-Speech and Hearing

      Vol:
    E95-D No:10
      Page(s):
    2568-2571

    In this paper, we propose a novel voice activity detection (VAD) algorithm using global speech absence probability (GSAP) based on Teager energy (TE) for speech enhancement. The proposed method provides a better representation of GSAP, resulting in improved decision performance for speech and noise segments by the use of a TE operator which is employed to suppress the influence of noise signals. The performance of our approach is evaluated by objective tests under various environments, and it is found that the suggested method yields better results than conventional schemes.

  • Compact Modeling of the p-i-n Diode Reverse Recovery Effect Valid for both Low and High Current-Density Conditions

    Masataka MIYAKE  Junichi NAKASHIMA  Mitiko MIURA-MATTAUSCH  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E95-C No:10
      Page(s):
    1682-1688

    Reverse-recovery modeling for p-i-n diodes in the high current-density conditions are discussed. With the dynamic carrier-distribution-based modeling approach, the reverse recovery behaviors are explained in the high current-density conditions, where the nonquasi-static (NQS) behavior of carriers in the drift region is considered. In addition, a specific feature under the high current-density condition is discussed. The proposed model is implemented into a commercial circuit simulator in the Verilog-A language and its reverse recovery modeling ability is verified with a two-dimensional (2D) device simulator, in comparison to the conventional lumped-charge modeling technique.

  • Multiple-Bit-Upset and Single-Bit-Upset Resilient 8T SRAM Bitcell Layout with Divided Wordline Structure

    Shusuke YOSHIMOTO  Takuro AMASHITA  Shunsuke OKUMURA  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:10
      Page(s):
    1675-1681

    This paper presents a new 8T (8-transistor) SRAM cell layout mitigating multiple-bit upset (MBU) in a divided wordline structure. Because bitlines along unselected columns are not activated, the divided wordline structure eliminates a half-select problem and achieves low-power operation, which is often preferred for low-power/low-voltage applications. However, the conventional 8T SRAM with the divided wordline structure engenders MBUs because all bits in the same word are physically adjoining. Consequently, it is difficult to apply an error correction coding (ECC) technique to it. In this paper, we propose a new 8T cell layout pattern that separates internal latches in SRAM cells using both an n-well and a p-substrate. We saw that a SEU cross section of nMOS is 3.5–4.5 times higher than that of pMOS (SEU: single event upset; a cross section signifies a sensitive area to soft error effects). By using a soft-error simulator, iRoC TFIT, we confirmed that the proposed 8T cell has better neutron-induced MBU tolerance. The simulator includes soft-error measurement data in a commercial 65-nm process. The MBU in the proposed 8T SRAM is improved by 90.70% and the MBU soft error rate (SER) is decreased to 3.46 FIT at 0.9 V when ECC is implemented (FIT: failure in time). Additionally, we conducted Synopsys 3-D TCAD simulation, which indicates that the linear energy transfer (LET) threshold in SEU is also improved by 66% in the proposed 8T SRAM by a common-mode effect.

  • Improving the Efficiency in Halftone Image Generation Based on Structure Similarity Index Measurement

    Aroba KHAN  Hernan AGUIRRE  Kiyoshi TANAKA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E95-D No:10
      Page(s):
    2495-2504

    This paper presents two halftoning methods to improve efficiency in generating structurally similar halftone images using Structure Similarity Index Measurement (SSIM). Proposed Method I reduces the pixel evaluation area by applying pixel-swapping algorithm within inter-correlated blocks followed by phase block-shifting. The effect of various initial pixel arrangements is also investigated. Proposed Method II further improves efficiency by applying bit-climbing algorithm within inter-correlated blocks of the image. Simulation results show that proposed Method I improves efficiency as well as image quality by using an appropriate initial pixel arrangement. Proposed Method II reaches a better image quality with fewer evaluations than pixel-swapping algorithm used in Method I and the conventional structure aware halftone methods.

  • Online Speaker Clustering Using Incremental Learning of an Ergodic Hidden Markov Model

    Takafumi KOSHINAKA  Kentaro NAGATOMO  Koichi SHINODA  

     
    PAPER-Speech and Hearing

      Vol:
    E95-D No:10
      Page(s):
    2469-2478

    A novel online speaker clustering method based on a generative model is proposed. It employs an incremental variant of variational Bayesian learning and provides probabilistic (non-deterministic) decisions for each input utterance, on the basis of the history of preceding utterances. It can be expected to be robust against errors in cluster estimation and the classification of utterances, and hence to be applicable to many real-time applications. Experimental results show that it produces 50% fewer classification errors than does a conventional online method. They also show that it is possible to reduce the number of speech recognition errors by combining the method with unsupervised speaker adaptation.

  • Selection of Characteristic Frames in Video for Efficient Action Recognition

    Guoliang LU  Mineichi KUDO  Jun TOYAMA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E95-D No:10
      Page(s):
    2514-2521

    Vision based human action recognition has been an active research field in recent years. Exemplar matching is an important and popular methodology in this field, however, most previous works perform exemplar matching on the whole input video clip for recognition. Such a strategy is computationally expensive and limits its practical usage. In this paper, we present a martingale framework for selection of characteristic frames from an input video clip without requiring any prior knowledge. Action recognition is operated on these selected characteristic frames. Experiments on 10 studied actions from WEIZMANN dataset demonstrate a significant improvement in computational efficiency (54% reduction) while achieving the same recognition precision.

  • Improved Histogram Shifting Technique for Low Payload Embedding by Using a Rate-Distortion Model and Optimal Side Information Selection

    Junxiang WANG  Jiangqun NI  Dong ZHANG  Hao LUO  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E95-D No:10
      Page(s):
    2552-2555

    In the letter, we propose an improved histogram shifting (HS) based reversible data hiding scheme for small payload embedding. Conventional HS based schemes are not suitable for low capacity embedding with relatively large distortion due to the inflexible side information selection. From an analysis of the whole HS process, we develop a rate-distortion model and provide an optimal adaptive searching approach for side information selection according to the given payload. Experiments demonstrate the superior performance of the proposed scheme in terms of performance curve for low payload embedding.

2801-2820hit(8214hit)