The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ERO(858hit)

381-400hit(858hit)

  • Maximizing Lifetime Sensing Coverage in Heterogeneous Sensors Deployments

    Jae-Joon LEE  Bhaskar KRISHNAMACHARI  C.-C. Jay KUO  

     
    PAPER

      Vol:
    E93-B No:11
      Page(s):
    2859-2867

    In practical settings of wireless sensor networks, it is often feasible to consider heterogeneous deployments of devices with different capabilities. Under prescribed cost constraints, we analyze such heterogenous deployments and present how they impact the coverage of a sensor network including spatial correlation effect. We derive expressions for the heterogeneous mixture of devices that maximizes the lifetime coverage in both single-hop direct and multi-hop communication models. Our results show that using an optimal mixture of many inexpensive low-capability devices and some expensive high-capability devices can significantly extend the duration of a network's sensing performance, especially in a network with low spatial correlation.

  • On Binary Sequence Pairs with Two-Level Periodic Autocorrelation Function

    Kai LIU  Chengqian XU  

     
    PAPER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2278-2285

    Binary sequence pairs as a class of mismatched filtering of binary sequences can be applied in radar, sonar, and spread spectrum communication system. Binary sequence pairs with two-level periodic autocorrelation function (BSPT) are considered as the extension of usual binary sequences with two-level periodic autocorrelation function. Each of BSPT consists of two binary sequences of which all out-phase periodic crosscorrelation functions, also called periodic autocorrelation functions of sequence pairs, are the same constant. BSPT have an equivalent relationship with difference set pairs (DSP), a new concept of combinatorial mathematics, which means that difference set pairs can be used to research BSPT as a kind of important tool. Based on the equivalent relationship between BSPT and DSP, several families of BSPT including perfect binary sequence pairs are constructed by recursively constructing DSP on the integer ring. The discrete Fourier transform spectrum property of BSPT reveals a necessary condition of BSPT. By interleaving perfect binary sequence pairs and Hadamard matrix, a new family of binary sequence pairs with zero correlation zone used in quasi-synchronous code multiple division address is constructed, which is close to the upper theoretical bound with sequence length increasing.

  • Improved Measurement Accuracy of a Laser Interferometer: Extended Kalman Filter Approach

    Wooram LEE  Dongkyun KIM  Kwanho YOU  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:10
      Page(s):
    1820-1823

    In this paper a nonlinearity compensation algorithm based on the extended Kalman filter is proposed to improve the measurement accuracy of a heterodyne laser interferometer. The heterodyne laser interferometer is used for ultra-precision measurements such as those used in semiconductor manufacturing. However the periodical nonlinearity property caused by frequency-mixing restricts the accuracy of the nanometric measurements. In order to minimize the effect of the nonlinearity, the measurement process of the laser interferometer is modeled as a state equation and the extended Kalman filtering approach is applied to the process. The effectiveness of our proposed algorithm is demonstrated by comparing the results of the algorithm with experimental results for the laser system.

  • Error Performance of Prerake Diversity Combining-Based UWB Spatial Multiplexing MIMO Systems over Indoor Wireless Channels

    Jinyoung AN  Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2817-2821

    In this letter, we consider a novel ultra-wideband (UWB) spatial multiplexing (SM) multiple input multiple output (MIMO) structure, which consists of prerake diversity combiners in the transmitter and a zero forcing (ZF) detector in the receiver. For a UWB SM MIMO system with N transmit antennas, M receive antennas, and L resolvable multipath components, it is shown that the proposed prerake combining-based MIMO detection scheme has the diversity order of (LN-M+1) and its BER performance is analytically presented in a log-normal fading channel and also compared with that of a rake combining-based ZF scheme.

  • Bandwidth and Gain Enhancement of Microstrip Patch Antennas Using Reflective Metasurface Open Access

    Sarawuth CHAIMOOL  Kwok L. CHUNG  Prayoot AKKARAEKTHALIN  

     
    INVITED PAPER

      Vol:
    E93-B No:10
      Page(s):
    2496-2503

    Bandwidth and gain enhancement of microstrip patch antennas (MPAs) is proposed using reflective metasurface (RMS) as a superstrate. Two different types of the RMS, namely- the double split-ring resonator (DSR) and double closed-ring resonator (DCR) are separately investigated. The two antenna prototypes were manufactured, measured and compared. The experimental results confirm that the RMS loaded MPAs achieve high-gain as well as bandwidth improvement. The desinged antenna using the RMS as a superstrate has a high-gain of over 9.0 dBi and a wide impedance bandwidth of over 13%. The RMS is also utilized to achieve a thin antenna with a cavity height of 6 mm, which is equivalent to λ/21 at the center frequency of 2.45 GHz. At the same time, the cross polarization level and front-to-back ratio of these antennas are also examined.

  • User Scheduling for Distributed-Antenna Zero-Forcing Beamforming Downlink Multiuser MIMO-OFDM Systems

    Masaaki FUJII  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:9
      Page(s):
    2370-2380

    We describe a user scheduling scheme suitable for zero-forcing beamforming (ZFBF) downlink multiuser multiple-input multiple-output (MU-MIMO) orthogonal frequency-division multiplexing (OFDM) transmissions in time-division-duplex distributed antenna systems. This user scheduling scheme consists of inter-cell-interference mitigation scheduling by using fractional frequency reuse, proportional fair scheduling in the OFDM frequency domain, and high-capacity ZFBF-MU-MIMO scheduling by using zero-forcing with selection (ZFS). Simulation results demonstrate in a severe user-distribution condition that includes cell-edge users that the proposed user scheduling scheme achieves high average cell throughputs close to that provided by only ZFS and that it also achieves almost the same degree of user fairness as round-robin user scheduling.

  • Arc Erosion of Polarised Contacts Ag-W by High Current

    Piotr BORKOWSKI  Makoto HASEGAWA  

     
    PAPER

      Vol:
    E93-C No:9
      Page(s):
    1416-1423

    The paper presents the state of knowledge about thermal-erosion processes in contacts of low-voltage switching devices for power engineering on switching currents under short-circuit conditions. The graphical models of the short arc and the distribution of arc power introduced into contacts are shown. The method for measurements of a contact temperature during an electric discharge has been elaborated. The obtained test results are presented, i.e. changes of a contact temperature as a function of arc parameters such as current, energy, and integral ∫idt. The tests have shown that a "break point" exists on the curve expressing the relationship between a temperature rise and arc parameters in the range of high currents. The location of this point is dependent on a diameter of contacts and a value of current, and is associated with thermal energy delivered to electrodes. It has been observed that for each diameter of contacts there exists such value of an energetic quantity of arc (current, ∫idt, energy), at which diameters of arc roots are the same as a contact diameter. Above this value, the shape of a curve is changed. The obtained results explain and confirm the discontinuity of a curve expressing a contact arc erosion as a function of current, which was observed earlier by the other research workers.

  • DIWSAN: Distributed Intelligent Wireless Sensor and Actuator Network for Heterogeneous Environment

    Cheng-Min LIN  Jyh-Horng LIN  Jen-Cheng CHIU  

     
    PAPER-Information Network

      Vol:
    E93-D No:9
      Page(s):
    2534-2543

    In a WSAN (Wireless Sensor and Actuator Network), most resources, including sensors and actuators, are designed for certain applications in a dedicated environment. Many researchers have proposed to use of gateways to infer and annotate heterogeneous data; however, such centralized methods produce a bottlenecking network and computation overhead on the gateways that causes longer response time in activity processing, worsening performance. This work proposes two distribution inference mechanisms: regionalized and sequential inference mechanisms to reduce the response time in activity processing. Finally, experimental results for the proposed inference mechanisms are presented, and it shows that our mechanisms outperform the traditional centralized inference mechanism.

  • Modulation-Doped Heterostructure-Thermopiles for Uncooled Infrared Image-Sensor Application

    Masayuki ABE  

     
    PAPER-III-V Heterostructure Devices

      Vol:
    E93-C No:8
      Page(s):
    1302-1308

    Novel thermopiles based on modulation doped AlGaAs/InGaAs, AlGaN/GaN, and ZnMgO/ZnO heterostructures are proposed and designed for the first time, for uncooled infrared image sensor application. These devices are expected to offer high performances due to both the superior Seebeck coefficient and the excellently high mobility of 2DEG and 2DHG due to high purity channel layers at the heterojunction interface. The AlGaAs/InGaAs thermopile has the figure-of-merit Z of as large as 1.110-2/K (ZT = 3.3 over unity at T = 300 K), and can be realized with a high responsivity R of 15,200 V/W and a high detectivity D* of 1.8109 cmHz1/2/W with uncooled low-cost potentiality. The AlGaN/GaN and the ZnMgO/ZnO thermopiles have the advantages of high sheet carrier concentration due to their large polarization charge effects (spontaneous and piezo polarization charges) as well as of a high Seebeck coefficient due to their strong phonon-drag effect. The high speed response time τ of 0.9 ms with AlGaN/GaN, and also the lower cost with ZnMgO/ZnO thermopiles can be realized. The modulation-doped heterostructure thermopiles presented here are expected to be used for uncooled infrared image sensor applications, and for monolithic integrations with other photon detectors such as InGaAs, GaN, and ZnO PiN photodiodes, as well as HEMT functional integrated circuit devices.

  • Adaptive Zero-Coefficient Distribution Scan for Inter Block Mode Coding of H.264/AVC

    Jing-Xin WANG  Alvin W.Y. SU  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:8
      Page(s):
    2273-2280

    Scanning quantized transform coefficients is an important tool for video coding. For example, the MPEG-4 video coder adopts three different scans to get better coding efficiency. This paper proposes an adaptive zero-coefficient distribution scan in inter block coding. The proposed method attempts to improve H.264/AVC zero coefficient coding by modifying the scan operation. Since the zero-coefficient distribution is changed by the proposed scan method, new VLC tables for syntax elements used in context-adaptive variable length coding (CAVLC) are also provided. The savings in bit-rate range from 2.2% to 5.1% in the high bit-rate cases, depending on different test sequences.

  • InP-Based Unipolar Heterostructure Diode for Vertical Integration, Level Shifting, and Small Signal Rectification

    Werner PROST  Dudu ZHANG  Benjamin MUNSTERMANN  Tobias FELDENGUT  Ralf GEITMANN  Artur POLOCZEK  Franz-Josef TEGUDE  

     
    PAPER-III-V Heterostructure Devices

      Vol:
    E93-C No:8
      Page(s):
    1309-1314

    A unipolar n-n heterostrucuture diode is developed in the InP material system. The electronic barrier is formed by a saw tooth type of conduction band bending which consists of a quaternary In0.52(AlyGa1-y)0.48As layer with 0 < y < ymax. This barrier is lattice matched for all y to InP and is embedded between two n+-InGaAs layers. By varying the maximum Al-content from ymax,1 = 0.7 to ymax,2 = 1 a variable barrier height is formed which enables a diode-type I-V characteristic by epitaxial design with an adjustable current density within 3 orders of magnitude. The high current density of the diode with the lower barrier height (ymax,1 = 0.7) makes it suitable for high frequency applications at low signal levels. RF measurements reveal a speed index of 52 ps/V at VD = 0.15 V. The device is investigated for RF-to-DC power conversion in UHF RFID transponders with low-amplitude RF signals.

  • A Class of Complementary Sequences with Multi-Width Zero Cross-Correlation Zone

    Zhenyu ZHANG  Fanxin ZENG  Guixin XUAN  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:8
      Page(s):
    1508-1517

    A novel construction of complementary sequences with multi-width zero cross-correlation zone (ZCCZ) is presented based on the interleaving iteration of a basic kernel set. The presented multi-width ZCCZ complementary (MWZC) sequences can be divided into multiple sequence groups, the correlation functions of which possess one-width intragroup ZCCZ and multi-width intergroup ZCCZ. When an arbitrary orthogonal sequence set with set size equal to sequence length is used as a basic kernel set, the constructed MWZC sequence set and the combination sets of specific subsets with each subset including several groups can be optimal with respect to the theoretical bound on set size. In addition, the MWZC sequence set includes complementary sequence sets with one-width or two-width ZCCZ as special subsets, and allows a more flexible choice of sequence parameters.

  • A 90-Gb/s Modulator Driver IC Based on Functional Distributed Circuits for Optical Transmission Systems

    Yasuyuki SUZUKI  Zin YAMAZAKI  Masayuki MAMADA  

     
    PAPER-III-V High-Speed Devices and Circuits

      Vol:
    E93-C No:8
      Page(s):
    1266-1272

    A monolithic modulator driver IC based on InP HBTs with a new circuit topology -- called a functional distributed circuit (FDC) -- for over 80-Gb/s optical transmission systems has been developed. The FDC topology includes a wide-band amplifier designed using a distributed circuit, a digital function designed using a lumped circuit, and broadband impedance matching between the lumped circuit and distributed circuit to enable both wider bandwidth and digital functions. The driver IC integrated with a 2:1 multiplexing function produces 2.6-Vp-p (differential output: 5.2 Vp-p) and 2.4- Vp-p (differential output: 4.8 Vp-p) output-voltage swings with less than 450-fs and 530-fs rms jitter at 80 Gb/s and 90 Gb/s, respectively. To the best of our knowledge, this is equivalent to the highest data rate operation yet reported for monolithic modulator drivers. When it was mounted in a module, the driver IC successfully achieved electro-optical modulation using a dual-drive LiNbO3 Mach-Zehnder modulator up to 90 Gb/s. These results indicate that the FDC has the potential to realize high-speed and functional ICs for over-80-Gb/s transmission systems.

  • Compact and Athermal DQPSK Demodulator with Silica-Based Planar Lightwave Circuit Open Access

    Yusuke NASU  Yohei SAKAMAKI  Kuninori HATTORI  Shin KAMEI  Toshikazu HASHIMOTO  Takashi SAIDA  Hiroshi TAKAHASHI  Yasuyuki INOUE  

     
    PAPER-Optoelectronics

      Vol:
    E93-C No:7
      Page(s):
    1191-1198

    We present a full description of a polarization-independent athermal differential quadrature phase shift keying (DQPSK) demodulator that employs silica-based planar lightwave circuit (PLC) technology. Silica-based PLC DQPSK demodulator has good characteristics including low polarization dependence, mass producibility, etc. However delay line interferometer (DLI) of demodulator had the large temperature dependence of its optical characteristics, so it required large power consumption to stabilize the chip temperature by the thermo-electric cooler (TEC). We previously made a quick report about an athermal DLI to reduce a power consumption by removing the TEC. In this paper, we focus on the details of the design and the fabrication method we used to achieve the athermal characteristics, and we describe the thermal stability of the signal demodulation and the reliability of our demodulator. We described two athermalization methods; the athermalization of the transmission spectrum and the athermalization of the polarization property. These methods were successfully demonstrated with keeping a high extinction ratio and a small footprint by introducing a novel interwoven DLI configuration. This configuration can also limit the degradation of the polarization dependent phase shift (PDf) to less than 1/10 that with the conventional configuration when the phase shifters on the waveguide are driven. We used our demodulator and examined its demodulation performance for a 43 Gbit/s DQPSK signal. We also verified its long-term reliability and thermal stability against the rapid temperature change. As a result, we confirmed that our athermal demodulator performed sufficiently well for use in DQPSK systems.

  • Implementation of HMM-Based Human Activity Recognition Using Single Triaxial Accelerometer

    Chang Woo HAN  Shin Jae KANG  Nam Soo KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:7
      Page(s):
    1379-1383

    In this letter, we propose a novel approach to human activity recognition. We present a class of features that are robust to the tilt of the attached sensor module and a state transition model suitable for HMM-based activity recognition. In addition, postprocessing techniques are applied to stabilize the recognition results. The proposed approach shows significant improvements in recognition experiments over a variety of human activity DB.

  • Feedback Bandwidth Allocation for Users under Different Types of Channels in Multi-Antenna Systems

    Lv DING  Wei XU  Bin JIANG  Xiqi GAO  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E93-B No:7
      Page(s):
    1980-1983

    This paper considers an optimized limited feedback design for a multi-antenna system serving multiple users under different types of channels: Rayleigh distributed and line-of-sight distributed channels. Since the users are asymmetric, we propose an optimized feedback bandwidth allocation scheme for users under a total feedback rate constraint. The allocation scheme is designed according to the long-term channel type information of users, and thus it can be efficiently implemented. Numerical results verify the effectiveness of our proposed scheme.

  • Moving Picture Coding by Lapped Transform and Edge Adaptive Deblocking Filter with Zero Pruning SPIHT

    Nasharuddin ZAINAL  Toshihisa TANAKA  Yukihiko YAMASHITA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:6
      Page(s):
    1608-1617

    We propose a moving picture coding by lapped transform and an edge adaptive deblocking filter to reduce the blocking distortion. We apply subband coding (SBC) with lapped transform (LT) and zero pruning set partitioning in hierarchical trees (zpSPIHT) to encode the difference picture. Effective coding using zpSPIHT was achieved by quantizing and pruning the quantized zeros. The blocking distortion caused by block motion compensated prediction is reduced by an edge adaptive deblocking filter. Since the original edges can be detected precisely at the reference picture, an edge adaptive deblocking filter on the predicted picture is very effective. Experimental results show that blocking distortion has been visually reduced at very low bit rate coding and better PSNRs of about 1.0 dB was achieved.

  • Fast Interior Point Method for MIMO Transmit Power Optimization with Per-Antenna Power Constraints

    Yusuke OHWATARI  Anass BENJEBBOUR  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1484-1493

    For multiple-input multiple-output (MIMO) precoded transmission that has individual constraints on the maximum power of each transmit antenna or a subset of transmit antennas, the transmit power optimization problem is a non-linear convex optimization problem with a high level of computational complexity. In this paper, assuming the use of the interior point method (IPM) to solve this problem, we propose two efficient techniques that reduce the computational complexity of the IPM by appropriately setting its parameters. Based on computer simulation, the achieved reductions in the level of the computational complexity are evaluated using the proposed techniques for both the fairness and the sum-rate maximization criteria assuming i.i.d Rayleigh fading MIMO channels and block diagonalization zero-forcing as a multi-user MIMO (MU-MIMO) precoder.

  • A Neural Recording Amplifier with Low-Frequency Noise Suppression

    Takeshi YOSHIDA  Yoshihiro MASUI  Ryoji EKI  Atsushi IWATA  Masayuki YOSHIDA  Kazumasa UEMATSU  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    849-854

    To detect neural spike signals, low-power neural signal recording frontend circuits must amplify neural signals with below 100 µV amplitude and a few hundred Hz frequency while suppressing a large DC offset voltage, 1/f noise of MOSFETs, and induced noise of AC power supply. To overcome the problem of unwanted noise at such a low signal level, a low-noise neural signal detection amplifier with low-frequency noise suppression scheme was developed utilizing a new autozeroing technique. A test chip was designed and fabricated with a mixed signal 0.18-µm CMOS technology. The voltage gain of 39 dB at the bandwidth of the neural signal and the gain reduction of 20 dB at AC supply noise of 60 Hz were obtained. The input equivalent noise and power dissipation were 90 nV/root-Hz and 90 µW at a supply voltage of 1.5 V, respectively.

  • New General Constructions of LCZ Sequence Sets Based on Interleaving Technique and Affine Transformations

    Xuan ZHANG  Qiaoyan WEN  Jie ZHANG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E93-A No:5
      Page(s):
    942-949

    In this paper, we propose four new general constructions of LCZ/ZCZ sequence sets based on interleaving technique and affine transformations. A larger family of LCZ/ZCZ sequence sets with longer period are generated by these constructions, which are more flexible among the selection of the alphabet size, the period of the sequences and the length of LCZ/ZCZ, compared with those generated by the known constructions. Especially, two families of the newly constructed sequences can achieve or almost achieve the theoretic bound.

381-400hit(858hit)