The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ERO(858hit)

481-500hit(858hit)

  • A Communication Means for Totally Locked-in ALS Patients Based on Changes in Cerebral Blood Volume Measured with Near-Infrared Light

    Masayoshi NAITO  Yohko MICHIOKA  Kuniaki OZAWA  Yoshitoshi ITO  Masashi KIGUCHI  Tsuneo KANAZAWA  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E90-D No:7
      Page(s):
    1028-1037

    A communication means is presented for patients with amyotrophic lateral sclerosis in totally locked-in state who are completely unable to move any part of the body and have no usual communication means. The method utilizes changes in cerebral blood volume accompanied with changes in brain activity. When a patient is asked a question and the answer to it is 'yes', the patient makes his or her brain active. The change in blood volume at the frontal lobe is detected with near-infrared light. The instantaneous amplitude and phase of the change are calculated, and the maximum amplitude and phase change are obtained. The answer 'yes' or 'no' of the patient is detected using a discriminant analysis with these two quantities as variables. The rate of correct detection is 80% on average.

  • 3.5-GHz-Band Low-Bias-Current Operation 0/20-dB Step Linearized Attenuators Using GaAs-HBT Compatible, AC-Coupled, Stack Type Base-Collector Diode Switch Topology

    Kazuya YAMAMOTO  Miyo MIYASHITA  Nobuyuki OGAWA  Takeshi MIURA  Teruyuki SHIMURA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E90-C No:7
      Page(s):
    1515-1523

    This paper describes two different types of GaAs-HBT compatible, base-collector diode 0/20-dB step attenuators--diode-linearizer type and harmonics-trap type--for 3.5-GHz-band wireless applications. The two attenuators use an AC-coupled, stacked type diode switch topology featuring high power handling capability with low bias current operation. Compared to a conventional diode switch topology, this topology can improve the capability of more than 6 dB with the same bias current. In addition, successful incorporation of a shunt diode linearizer and second- and third-harmonic traps into the attenuators gives the IM3 distortion improvement of more than 7 dB in the high power ranging from 16 dBm to 18 dBm even in the 20-dB attenuation mode when IM3 distortion levels are basically easy to degrade. Measurement results show that both the attenuators are capable of delivering power handling capability (P0.2 dB) of more than 18 dBm with IM3 levels of less than -35 dBc at an 18-dBm input power while drawing low bias currents of 3.8 mA and 6.8 mA in the thru and attenuation modes from 0/5-V complementary supplies. Measured insertion losses of the linearizer-type and harmonics-trap type attenuators in the thru mode are as low as 1.4 dB and 2.5 dB, respectively.

  • Migration of Composite Contact Materials Components at High Current Arcing

    Eugeniusz WALCZUK  Piotr BORKOWSKI  Krystyna FRYDMAN  Danuta WOJCIK-GRZYBEK  Witold BUCHOLC  Makoto HASEGAWA  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E90-C No:7
      Page(s):
    1377-1384

    The paper presents a method for testing transport of composite contacts materials under electrical arc conditions at high currents and for polarized electrodes. Tests and the discussion of results were carried out for silver-metal, silver-metal oxide and silver-tungsten carbide contact materials. Additionally, tungsten electrode was used as the second contact which was either cathode or anode. Spectrometric analysis of arc erosion components transported onto the second electrode and into the surroundings was carried out.

  • A Computer Program for the Calculation of Electrode Mass Loss under Electric Arc Conditions

    Piotr BORKOWSKI  Makoto HASEGAWA  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E90-C No:7
      Page(s):
    1369-1376

    The paper presents a computer program for the calculation of contact mass loss in the case of evaporation, ablation and melting. It makes use of theoretical mathematical equations previously published by a lot of researchers. For the purposes of the program, an expert system algorithm was designed. The paper presents results obtained by means of the proposed program for silver, tungsten and copper.

  • Zero-Anaphora Resolution in Chinese Using Maximum Entropy

    Jing PENG  Kenji ARAKI  

     
    PAPER-Natural Language Processing

      Vol:
    E90-D No:7
      Page(s):
    1092-1102

    In this paper, we propose a learning classifier based on maximum entropy (ME) for resolving zero-anaphora in Chinese text. Besides regular grammatical, lexical, positional and semantic features motivated by previous research on anaphora resolution, we develop two innovative Web-based features for extracting additional semantic information from the Web. The values of the two features can be obtained easily by querying the Web using some patterns. Our study shows that our machine learning approach is able to achieve an accuracy comparable to that of state-of-the-art systems. The Web as a knowledge source can be incorporated effectively into the ME learning framework and significantly improves the performance of our approach.

  • Sputter Erosion Model of Arcing Contact Materials

    Zhenbiao LI  Xixiu WU  Hassan NOURI  Makoto HASEGAWA  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E90-C No:7
      Page(s):
    1356-1360

    The sputter erosion of arcing contacts is a very complex phenomenon, which is determined by the interaction between electromagnetic force, heat conduction and surface tension of liquid metal. A new model for evaluating the sputter erosion of electrodes is described in this paper, which is based on the electromagnetic forces against the molten pool, flowing velocity, kinetic energy and the surface tension of the molten pool. Erosion tests on AgSnO2, AgNi10 and AgNi0.15 contacts under the loads of resistance, lamp and inductance respectively at 14 VDC have been carried out. Experimental results indicate good agreement with the model's simulation. The model shows how the current and density, specific heat and other parameters of material affect the erosion rate.

  • Channel Optimized Predistortion in Self-Heterodyne Direct Conversion Architecture for OFDM Systems

    Jun-Seok YANG  Jong-Ho LEE  Seong-Cheol KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1400-1406

    This paper presents a novel technique to compensate intermodulation distortion of a self-heterodyne direct conversion OFDM system in multipath propagation environments. A self-heterodyne direct conversion system has an advantage that simple receivers can be built that are completely immune to any phase noise or frequency offset. This system, however, has a disadvantage that the nonlinear square-law detector at the receiver of the self-heterodyne direct conversion system gives rise to second order intermodulation distortion. In this study, channel estimation is performed using a training sequence and then the predistortion coefficients with regard to estimated channel parameters are derived to compensate the receiver nonlinearity. Transmit power distribution is employed to overcome multipath fading channels as well. Computer simulation demonstrates that the proposed approach improves the BER performance of the self-heterodyne direct conversion OFDM system in a multipath fading channel. This scheme gives advantage to multi-carrier systems that are much more sensitive to frequency and phase error than single-carrier systems.

  • Low-Voltage and Low-Noise CMOS Analog Circuits Using Scaled Devices

    Atsushi IWATA  Takeshi YOSHIDA  Mamoru SASAKI  

     
    INVITED PAPER

      Vol:
    E90-C No:6
      Page(s):
    1149-1155

    Recently low-voltage and low-noise analog circuits with sub 100-nm CMOS devices are strongly demanded for implementing mobile digital multimedia and wireless systems. Reduction of supply voltage makes it difficult to attain a signal voltage swing, and device deviation causes large DC offset voltage and 1/f noise. This paper describes noise reduction technique for CMOS analog and RF circuits operated at a low supply voltage below 1 V. First, autozeroing and chopper stabilization techniques without floating analog switches are introduced. The amplifier test chip with a 0.18-µm CMOS was measured at a 0.6-V supply, and achieved 89-nV/ input referred noise (at 100 Hz). Secondly, in RF frequency range, to improve a phase noise of voltage controlled oscillator (VCO), two 1/f-noise reduction techniques are described. The ring VCO test chip achieves 1-GHz oscillation, -68 dBc/Hz at 100-kHz offset, 710-µW power dissipation at 1-V power supply.

  • CS-CDMA/CP with ZCZ Codes from an M-Sequence and Its Performance for Downlink Transmission over a Multipath Fading Channel

    Nalin S. WEERASINGHE  Chenggao HAN  Takeshi HASHIMOTO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E90-A No:6
      Page(s):
    1204-1213

    Convolutional spreading CDMA with cyclic prefix (CS-CDMA/CP) is a multiuser interference-free (MUI-free) CDMA scheme proposed for multipath channels based on the convolution between user data and zero correlation zone (ZCZ) code, and its characteristics depend on the employed ZCZ codes. Although ternary ZCZ codes have more sequences than binary ZCZ codes in general, transmitted signal with ternary ZCZ codes give a slightly higher peak-to-average power ratio (PAPR). In this paper we propose the use of periodic ZCZ codes generated from an M-sequence which not only provides the same user capacity as ternary ZCZ codes but allows more design flexibility. Simulation results show that the new ZCZ code shows stronger robustness against an imperfect transmitter with clipping and enjoys better BER performances when used in CS-CDMA/CP compared to the conventional DS-CDMA with MRC-RAKE.

  • Possibility of Terahertz Injection-Locked Oscillation in an InGaP/InGaAs/GaAs Two-Dimensional Plasmon-Resonant Photomixer

    Mitsuhiro HANABE  Yahya Moubarak MEZIANI  Taiichi OTSUJI  Eiichi SANO  Tanemasa ASANO  

     
    PAPER-Emerging Devices

      Vol:
    E90-C No:5
      Page(s):
    949-954

    We experimentally investigated terahertz photomixing operation at room temperature in an InGaP/InGaAs/ GaAs two-dimensional plasmon-resonant photomixer incorporating grating-bicoupled dual-gate structure. Photoelectrons drifting into a high-density plasmon cavity grating from an adjacent low-density one extensively excite the plasmon resonance, resulting in emission of terahertz radiation. A vertical cavity formed between the two-dimensional plasmon grating plane and an indium-tin-oxide mirror at the back surface gains the radiation. Self-oscillation initially at around 4.5 THz excited by a dc-photo carrier component was reinforced by the photomixed differential-frequency excitation at 4.0 and 5.0 THz. This indicates a possibility of injection-locked oscillation of the photomixer in the terahertz frequency band.

  • High Power GaAs Heterojunction FET with Dual Field-Modulating-Plates for 28 V Operated W-CDMA Base Station

    Kouji ISHIKURA  Isao TAKENAKA  Hidemasa TAKAHASHI  Kouichi HASEGAWA  Kazunori ASANO  Naotaka IWATA  

     
    PAPER-Compound Semiconductor and Power Devices

      Vol:
    E90-C No:5
      Page(s):
    923-928

    This report presents Dual Field-modulating-Plates (Dual-FP) technology for a 28 V operated high power GaAs heterojunction FET (HJFET) amplifier. A developed HJFET has two FP electrodes; the 1st-FP is connected to the gate and the 2nd-FP to the ground. The 2nd-FP suppresses the drain current dispersion effectively cooperating with the 1st-FP, and it can also reduce the gate-drain parasitic capacitance. The developed push-pull amplifier, with four Dual-FPFET chips, demonstrated 55.1 dBm (320 W) output power with a 14.0 dB linear gain and a drain efficiency of 62% at 2.14 GHz. Under two-carrier W-CDMA signals, it showed a high drain efficiency of 30% and low third-order Inter-modulation distortion of -37 dBc at output power of 47.5 dBm.

  • Design and Fabrication of 40 Gbps-NRZ SOA-MZI All-Optical Wavelength Converters with Submicron-Width Bulk InGaAsP Active Waveguides

    Yasunori MIYAZAKI  Kazuhisa TAKAGI  Keisuke MATSUMOTO  Toshiharu MIYAHARA  Tatsuo HATTA  Satoshi NISHIKAWA  Toshitaka AOYAGI  Kuniaki MOTOSHIMA  

     
    PAPER-Semiconductor Devices

      Vol:
    E90-C No:5
      Page(s):
    1118-1123

    The design aspects of the bulk InGaAsP semiconductor optical amplifier integrated Mach-Zehnder interferometer (SOA-MZI) optimized for 40 Gbps-NRZ all optical wavelength conversion are described. The dimensions of the SOA active waveguide have been optimized for fast gain recovery by maximizing the gain and adjusting the wavelength-converted NRZ waveforms. Submicron-width buried heterostructure (BH) SOA waveguides were fabricated successfully and showed little leakage current. The experimental wavelength-converted optical waveform agreed well to the numerical simulations, and mask-compliant 40 G-NRZ wavelength-converted waveform was obtained by the optimized SOA-MZI. 40 G-NRZ full C-band operation and polarization-insensitive operation of SOA-MZI were also achieved.

  • Zero-Correlation Zone Sequence Set Constructed from a Perfect Sequence

    Takafumi HAYASHI  

     
    LETTER-Coding Theory

      Vol:
    E90-A No:5
      Page(s):
    1107-1111

    The present paper introduces the construction of a class of sequence sets with zero-correlation zones called zero-correlation zone sequence sets. The proposed zero-correlation zone sequence set can be generated from an arbitrary perfect sequence, the length of which is longer than 4. The proposed sets of ternary sequences, which can be constructed from an arbitrary perfect sequence, can successfully provide CDMA communication without co-channel interference. In an ultrasonic synthetic aperture imaging system, the proposed sequence set can improve the signal-to-noise ratio of the acquired image.

  • Receiver-Based ACK Splitting Mechanism for TCP over Wired/Wireless Heterogeneous Networks Open Access

    Go HASEGAWA  Masashi NAKATA  Hirotaka NAKANO  

     
    PAPER-Network

      Vol:
    E90-B No:5
      Page(s):
    1132-1141

    With the rapid development of wireless network technologies, heterogeneous networks with wired and wireless links are becoming common. However, the performance of TCP data transmission deteriorates significantly when a TCP connection traverses such networks, mainly because of packet losses caused by the high bit error rate of wireless links. Many solutions for this problem have been proposed in the past literature. However, most of them have various drawbacks, such as difficulties in their deployment by the wireless access network provider and end users, violation of TCP's end-to-end principle by splitting the TCP connection, or inapplicability to IP-level encrypted traffic because the base station needs to access the TCP header. In this paper, we propose a new mechanism without such drawbacks to improve the performance of TCP over wired and wireless heterogeneous networks. Our mechanism employs a receiver-based approach, which does not need modifications to be made to the sender TCP or the base station. It uses the ACK-splitting method for increasing the congestion window size quickly in order to restrain the throughput degradation caused by packet losses due to the high bit error rate of wireless links. We evaluate the performance of our mechanism and show that our mechanism can increase throughput by up to 94% in a UMTS network. The simulation results also show that our mechanism does not significantly deteriorate even when the receiver cannot perfectly distinguish whether packet losses are due to network congestion or bit errors on the wireless links.

  • A Carrier Interferometry Based Channel Estimation Technique for MIMO-OFDM/TDMA Systems

    Kazunari YOKOMAKURA  Seiichi SAMPEI  Hiroshi HARADA  Norihiko MORINAGA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1181-1192

    This paper proposes a channel estimation technique for the dynamic parameter controlled--orthogonal frequency and time division multiple access (DPC-OF/TDMA) systems studied as one of the candidates of the beyond third generation (B3G) systems. In the proposed scheme, the impulse response, which represents the channel state information (CSI) is estimated using carrier interferometry (CI) which is equivalent to impulse signal transmission. Moreover, because the minimum number of subcarriers allocated to terminals is 64, in order to estimate a CSI with its spreading factor of 64, we employ a code-multiplexed CI signal for a cell search process and a time-domain-multiplexed CI signal for transmit antenna identification. Furthermore, we also propose a flexible CSI estimation scheme that supports two cases: multiple subchannel block assignment and MIMO transmission cases. Computer simulation confirms that the proposed scheme can estimate the CSI with high accuracy.

  • WF-Net Based Modeling and Soundness Verification of Interworkflows

    Shingo YAMAGUCHI  Hajime MATSUO  Qi-Wei GE  Minoru TANAKA  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    829-835

    This paper deals with WF-net based modeling and verification of interorganizational workflows (interworkflows for short) based on the protocol of WfMC. In the protocol, there are three patterns of interoperability: Chained, Nested, and Parallel synchronized; and an interworkflow is constructed by using those interoperability patterns. We first give a WF-net based modeling method. In this modeling method, the three interoperability patterns are respectively expressed in terms of WF-nets. They enable us to model a given interworkflow as a WF-net by connecting WF-nets representing its constituent workflows. We also indicate that if free choice WF-nets are connected by means of any combination of the three patterns then the resultant WF-net is asymmetric choice. Next we discuss verification of WF-nets obtained through the modeling method. Intuitively, a WF-net is said to be sound if, for any case, the initial state is always transformed to the final state. Unfortunately, even if every constituent WF-net is sound FC, the resultant WF-net is not always sound. We give a sufficient condition of non-soundness checkable in polynomial time. We also show that if they are connected by only the Nested pattern then the resultant WF-net is sound.

  • Dynamic Task Flow Scheduling for Heterogeneous Distributed Computing: Algorithm and Strategy

    Wei SUN  Yuanyuan ZHANG  Yasushi INOGUCHI  

     
    PAPER-Computer Systems

      Vol:
    E90-D No:4
      Page(s):
    736-744

    Heterogeneous distributed computing environments are well suited to meet the fast increasing computational demands. Task scheduling is very important for a heterogeneous distributed system to satisfy the large computational demands of applications. The performance of a scheduler in a heterogeneous distributed system normally has something to do with the dynamic task flow, that is, the scheduler always suffers from the heterogeneity of task sizes and the variety of task arrivals. From the long-term viewpoint it is necessary and possible to improve the performance of the scheduler serving the dynamic task flow. In this paper we propose a task scheduling method including a scheduling strategy which adapts to the dynamic task flow and a genetic algorithm which can achieve the short completion time of a batch of tasks. The strategy and the genetic algorithm work with each other to enhance the scheduler's efficiency and performance. We simulated a task flow with enough tasks, the scheduler with our strategy and algorithm, and the schedulers with other strategies and algorithms. We also simulated a complex scenario including the variant arrival rate of tasks and the heterogeneous computational nodes. The simulation results show that our scheduler achieves much better scheduling results than the others, in terms of the average waiting time, the average response time, and the finish time of all tasks.

  • Efficient 3-D Sound Movement with Time-Varying IIR Filters

    Kosuke TSUJINO  Wataru KOBAYASHI  Takao ONOYE  Yukihiro NAKAMURA  

     
    PAPER-Speech/Audio Processing

      Vol:
    E90-A No:3
      Page(s):
    618-625

    3-D sound using head-related transfer functions (HRTFs) is applicable to embedded systems such as portable devices, since it can create spatial sound effect without multichannel transducers. Low-order modeling of HRTF with an IIR filter is effective for the reduction of the computational load required in embedded applications. Although modeling of HRTFs with IIR filters has been studied earnestly, little attention has been paid to sound movement with IIR filters, which is important for practical applications of 3-D sound. In this paper, a practical method for sound movement is proposed, which utilizes time-varying IIR filters and variable delay filters. The computational cost for sound movement is reduced by about 50% with the proposed method, compared to conventional low-order FIR implementation. In order to facilitate efficient implementation of 3-D sound movement, tradeoffs between the subjective quality of the output sound and implementation parameters such as the size of filter coefficient database and the update period of filter coefficients are also discussed.

  • Zero-Skew Driven Buffered RLC Clock Tree Construction

    Jan-Ou WU  Chia-Chun TSAI  Chung-Chieh KUO  Trong-Yen LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E90-A No:3
      Page(s):
    651-658

    In nature an unbalanced clock tree exists in a SoC because the clock sinks of IPs have distinct input capacitive loads and internal delays. The construction of a bottom-up RLC clock tree with minimal clock delay and zero skew is crucial to ensure good SoC performance. This study proves that an RLC clock tree construction always has no zero skew owing to skew upward propagation. Specifically, this study proposes the insertion of two unit-size buffers associated with the binary search for a tapping point into each pair of subtrees to interrupt the non-zero skew upward propagation. This technique enables reliable construction of a buffered RLC clock tree with zero skew. The effectiveness of the proposed approach is demonstrated by assessing benchmarks.

  • Scheduling for Independent-Task Applications on Heterogeneous Parallel Computing Environments under the Unidirectional One-Port Model

    Fukuhito OOSHITA  Susumu MATSUMAE  Toshimitsu MASUZAWA  

     
    PAPER-Parallel and Distributed Computing

      Vol:
    E90-D No:2
      Page(s):
    403-417

    For execution of computation-intensive applications, one of the most important paradigms is to divide the application into a large number of small independent tasks and execute them on heterogeneous parallel computing environments (abbreviated by HPCEs). In this paper, we aim to execute independent tasks efficiently on HPCEs. We consider the problem to find a schedule that maximizes the throughput of task execution for a huge number of independent tasks. First, for HPCEs where the network forms a directed acyclic graph, we show that we can find, in polynomial time, a schedule that attains the optimal throughput. Secondly, for arbitrary HPCEs, we propose an (+ε)-approximation algorithm for any constant ε(ε>0). In addition, we also show that the framework of our approximation algorithm can be applied to other collective communications such as the gather operation.

481-500hit(858hit)