The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

381-400hit(4570hit)

  • Concurrent Transmission Scheduling for Perceptual Data Sharing in mmWave Vehicular Networks

    Akihito TAYA  Takayuki NISHIO  Masahiro MORIKURA  Koji YAMAMOTO  

     
    PAPER

      Pubricized:
    2019/02/27
      Vol:
    E102-D No:5
      Page(s):
    952-962

    Sharing perceptual data (e.g., camera and LiDAR data) with other vehicles enhances the traffic safety of autonomous vehicles because it helps vehicles locate other vehicles and pedestrians in their blind spots. Such safety applications require high throughput and short delay, which cannot be achieved by conventional microwave vehicular communication systems. Therefore, millimeter-wave (mmWave) communications are considered to be a key technology for sharing perceptual data because of their wide bandwidth. One of the challenges of data sharing in mmWave communications is broadcasting because narrow-beam directional antennas are used to obtain high gain. Because many vehicles should share their perceptual data to others within a short time frame in order to enlarge the areas that can be perceived based on shared perceptual data, an efficient scheduling for concurrent transmission that improves spatial reuse is required for perceptual data sharing. This paper proposes a data sharing algorithm that employs a graph-based concurrent transmission scheduling. The proposed algorithm realizes concurrent transmission to improve spatial reuse by designing a rule that is utilized to determine if the two pairs of transmitters and receivers interfere with each other by considering the radio propagation characteristics of narrow-beam antennas. A prioritization method that considers the geographical information in perceptual data is also designed to enlarge perceivable areas in situations where data sharing time is limited and not all data can be shared. Simulation results demonstrate that the proposed algorithm doubles the area of the cooperatively perceivable region compared with a conventional algorithm that does not consider mmWave communications because the proposed algorithm achieves high-throughput transmission by improving spatial reuse. The prioritization also enlarges the perceivable region by a maximum of 20%.

  • Investigation of Time Evolution of Length of Break Arcs Occurring in a 48VDC/50-300A Resistive Circuit

    Kenshi HAMAMOTO  Junya SEKIKAWA  

     
    BRIEF PAPER-Electromechanical Devices and Components

      Vol:
    E102-C No:5
      Page(s):
    424-427

    Break arcs are generated in a 48VDC resistive circuit. Circuit current I0 when electrical contacts are closed is changed from 50A to 300A. The break arcs are observed by a high-speed camera with appropriate settings of exposure from horizontal direction. Length of the break arcs L is measured from images of the break arcs. Time evolutions of the length L and gap voltage Vg are investigated. The following results are obtained. By appropriate settings of the high-speed camera, the time evolution of the length L is obtained from just after ignition to before arc extinction. Tendency of increase of the length L is similar to that of increase of the voltage Vg for each current I0.

  • Memory Saving Feature Descriptor Using Scale and Rotation Invariant Patches around the Feature Ppoints Open Access

    Masamichi KITAGAWA  Ikuko SHIMIZU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/02/05
      Vol:
    E102-D No:5
      Page(s):
    1106-1110

    To expand the use of systems using a camera on portable devices such as tablets and smartphones, we have developed and propose a memory saving feature descriptor, the use of which is one of the essential techniques in computer vision. The proposed descriptor compares pixel values of pre-fixed positions in the small patch around the feature point and stores binary values. Like the conventional descriptors, it extracts the patch on the basis of the scale and orientation of the feature point. For memories of the same size, it achieves higher accuracy than ORB and BRISK in all cases and AKAZE for the images with textured regions.

  • Dynamic Strain Measurement with Bandwidth Allocation by Using Random Accessibility of BOCDR

    Osamu FURUKAWA  Hideo SHIDA  Shin-ichiro TEZUKA  Satoshi MATSUURA  Shoji ADACHI  

     
    PAPER-Sensing

      Pubricized:
    2018/11/13
      Vol:
    E102-B No:5
      Page(s):
    1069-1076

    A Brillouin optical correlation domain reflectometry (BOCDR) system, which can set measuring point to arbitrary distance that is aligned in a random order along an optical fiber (i.e., random accessibility), is proposed to measure dynamic strain and experimentally evaluated. This random-access system can allocate measurement bandwidth to measuring point by assigning the measurement times at each measuring point of the total number of strain measurements. This assigned number is not always equally but as necessary for plural objects with different natural frequencies. To verify the system, strain of two vibrating objects with different natural frequencies was measured by one optical fiber which is attached to those objects. The system allocated appropriate measurement bandwidth to each object and simultaneously measured dynamic strain corresponding to the vibrating objects.

  • Scalability Analysis of Deeply Pipelined Tsunami Simulation with Multiple FPGAs Open Access

    Antoniette MONDIGO  Tomohiro UENO  Kentaro SANO  Hiroyuki TAKIZAWA  

     
    PAPER-Applications

      Pubricized:
    2019/02/05
      Vol:
    E102-D No:5
      Page(s):
    1029-1036

    Since the hardware resource of a single FPGA is limited, one idea to scale the performance of FPGA-based HPC applications is to expand the design space with multiple FPGAs. This paper presents a scalable architecture of a deeply pipelined stream computing platform, where available parallelism and inter-FPGA link characteristics are investigated to achieve a scaled performance. For a practical exploration of this vast design space, a performance model is presented and verified with the evaluation of a tsunami simulation application implemented on Intel Arria 10 FPGAs. Finally, scalability analysis is performed, where speedup is achieved when increasing the computing pipeline over multiple FPGAs while maintaining the problem size of computation. Performance is scaled with multiple FPGAs; however, performance degradation occurs with insufficient available bandwidth and large pipeline overhead brought by inadequate data stream size. Tsunami simulation results show that the highest scaled performance for 8 cascaded Arria 10 FPGAs is achieved with a single pipeline of 5 stream processing elements (SPEs), which obtained a scaled performance of 2.5 TFlops and a parallel efficiency of 98%, indicating the strong scalability of the multi-FPGA stream computing platform.

  • Sum Throughput Maximization for MIMO Wireless Powered Communication Networks with Discrete Signal Inputs

    Feng KE  Xiaoyu HUANG  Weiliang ZENG  Yuqin LIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/26
      Vol:
    E102-B No:5
      Page(s):
    1037-1044

    Wireless powered communication networks (WPCNs) utilize the wireless energy transfer (WET) technique to facilitate the wireless information transmission (WIT) of nodes. We propose a two-step iterative algorithm to maximize the sum throughput of the users in a MIMO WPCN with discrete signal inputs. Firstly, the optimal solution of a convex power allocation problem can be found given a fixed time allocation; Secondly, a semi closed form solution for the optimal time allocation is obtained when fixing the power allocation matrix. By optimizing the power allocation and time allocation alternately, the two-step algorithm converges to a local optimal point. Simulation results show that the proposed algorithm outperforms the conventional schemes, which consider only Gaussian inputs.

  • Efficient Hybrid DOA Estimation for Massive Uniform Linear Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:5
      Page(s):
    721-724

    This letter presents an efficient hybrid direction of arrival (DOA) estimation scheme for massive uniform linear array. In this scheme, the DOA estimator based on a discrete Fourier transform (DFT) is first applied to acquire coarse initial DOA estimates for single data snapshot. And then, the fine DOA is accurately estimated through using the iterative search estimator within a very small region. It iteratively searches for correct DOA vector by minimizing the objective function using a Taylor series approximation of the DOA vector with the one initially estimated. Since the proposed scheme does not need to perform eigen-decomposition and spectrum search while maintaining better DOA estimates, it also has low complexity and real-time capability. Simulation results are presented to demonstrate the efficiency of the proposed scheme.

  • Multi-Target Classification Based Automatic Virtual Resource Allocation Scheme

    Abu Hena Al MUKTADIR  Takaya MIYAZAWA  Pedro MARTINEZ-JULIA  Hiroaki HARAI  Ved P. KAFLE  

     
    PAPER

      Pubricized:
    2019/02/19
      Vol:
    E102-D No:5
      Page(s):
    898-909

    In this paper, we propose a method for automatic virtual resource allocation by using a multi-target classification-based scheme (MTCAS). In our method, an Infrastructure Provider (InP) bundles its CPU, memory, storage, and bandwidth resources as Network Elements (NEs) and categorizes them into several types in accordance to their function, capabilities, location, energy consumption, price, etc. MTCAS is used by the InP to optimally allocate a set of NEs to a Virtual Network Operator (VNO). Such NEs will be subject to some constraints, such as the avoidance of resource over-allocation and the satisfaction of multiple Quality of Service (QoS) metrics. In order to achieve a comparable or higher prediction accuracy by using less training time than the available ensemble-based multi-target classification (MTC) algorithms, we propose a majority-voting based ensemble algorithm (MVEN) for MTCAS. We numerically evaluate the performance of MTCAS by using the MVEN and available MTC algorithms with synthetic training datasets. The results indicate that the MVEN algorithm requires 70% less training time but achieves the same accuracy as the related ensemble based MTC algorithms. The results also demonstrate that increasing the amount of training data increases the efficacy ofMTCAS, thus reducing CPU and memory allocation by about 33% and 51%, respectively.

  • Ultra-Low-Power Class-AB Bulk-Driven OTA with Enhanced Transconductance

    Seong Jin CHOE  Ju Sang LEE  Sung Sik PARK  Sang Dae YU  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E102-C No:5
      Page(s):
    420-423

    This paper presents an ultra-low-power class-AB bulk-driven operational transconductance amplifier operating in the subthreshold region. Employing the partial positive feedback in current mirrors, the effective transconductance and output voltage swing are enhanced considerably without additional power consumption and layout area. Both traditional and proposed OTAs are designed and simulated for a 180 nm CMOS process. They dissipate an ultra low power of 192 nW. The proposed OTA features not only a DC gain enhancement of 14 dB but also a slew rate improvement of 200%. In addition, the improved gain leads to a 5.3 times wider unity-gain bandwidth than that of the traditional OTA.

  • Quantum Algorithm on Logistic Regression Problem

    Jun Suk KIM  Chang Wook AHN  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/01/28
      Vol:
    E102-D No:4
      Page(s):
    856-858

    We examine the feasibility of Deutsch-Jozsa Algorithm, a basic quantum algorithm, on a machine learning-based logistic regression problem. Its major property to distinguish the function type with an exponential speedup can help identify the feature unsuitability much more quickly. Although strict conditions and restrictions to abide exist, we reconfirm the quantum superiority in many aspects of modern computing.

  • Selective Mapping for Robust Data Transmission Using TxID Signal

    Jaekwon LEE  Sanghwa LEE  Dong Ku KIM  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    940-947

    For Advanced Television Systems Committee (ATSC) digital terrestrial broadcasting systems, a transmitter identification (TxID) technique is introduced to analyze interference among broadcasting transmitters in single frequency networks (SFN). Based on the TxID analysis results, the transmit power and emission time delay of each broadcasting transmitter can be adjusted to minimize the effects of co- and adjacent- channel interference. For this reason, TxID has been recognized as an important feature in SFN configurations for ATSC 1.0 and 3.0 standards. Recently, there has been increasing interest in employing TxID for data transmission. This paper proposes a TxID based data transmission method for use with ATSC 1.0 and 3.0 standards. The major advantage of this data transmission method is its robustness while maintaining TxID properties. Simulations and laboratory tests demonstrate that the proposed technique can achieve a robust data transmission with backward compatibility to legacy ATSC 1.0 and 3.0 receivers.

  • Secure Communication Using Scramble Phase Assisting WFRFT

    Yuan LIANG  Xinyu DA  Ruiyang XU  Lei NI  Dong ZHAI  Yu PAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/10/03
      Vol:
    E102-B No:4
      Page(s):
    779-789

    In this paper, a scramble phase assisting weighted-type fractional Fourier transform (SPA-WFRFT) based system is proposed to guarantee the communication's security. The original transmitting signal is divided into two parts. The first part is modulated by WFRFT and subsequently makes up the constellation beguiling. The other part is used to generate the scramble phase and also to assist in the encryption of the WFRFT modulated signal dynamically. The novel constellation optimal model is built and solved through the genetic algorithm (GA) for the constellation beguiling. And the double pseudo scheme is implemented for the scramble phase generation. Theoretical analyses show that excellent security performances and high spectral efficiency can be attained. Final simulations are carried out to evaluate the performances of the SPA-WFRFT based system, and demonstrate that the proposed system can effectively degrade the unauthorized receivers' bit error rate (BER) performance while maintaining its own communication quality.

  • Recent Progress with Next Generation High-Speed Ethernet Optical Device Technology Open Access

    Hiroshi ARUGA  Keita MOCHIZUKI  Tadashi MURAO  Mizuki SHIRAO  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    324-332

    Ethernet has become an indispensable technology for communications, and has come into use for many applications. At the IEEE, high-speed standardization has been discussed and has seen the adoption of new technologies such as multi-level modulation formats, high baud rate modulation and dense wave length division multiplexing. The MSA transceiver form factor has also been discussed following IEEE standardization. Optical devices such as TOSA and ROSA have been required to become more compact and higher-speed, because each transceiver form factor has to be miniaturized for high-density construction. We introduce the technologies for realizing 100GbE and those applicable to 400GbE. We also discuss future packages for optical devices. There are many similarities between optical device packages and electrical device packages, and we predict that optical device packages will follow the trends seen in electrical devices. But there are also differences between optical and electrical devices. It is necessary to utilize new technology for specific optical issues to employ advanced electrical packaging and catch up the trends.

  • Design and Feasibility Study: Customized Virtual Buttons for Electronic Mobile Devices

    Seungtaek SONG  Namhyun KIM  Sungkil LEE  Joyce Jiyoung WHANG  Jinkyu LEE  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E102-A No:4
      Page(s):
    668-671

    Smartphone users often want to customize the positions and functions of physical buttons to accommodate their own usage patterns; however, this is unfeasible for electronic mobile devices based on COTS (Commercial Off-The-Shelf) due to high production costs and hardware design constraints. In this letter, we present the design and implementation of customized virtual buttons that are localized using only common built-in sensors of electronic mobile devices. We develop sophisticated strategies firstly to detect when a user taps one of the virtual buttons, and secondly to locate the position of the tapped virtual button. The virtual-button scheme is implemented and demonstrated in a COTS-based smartphone. The feasibility study shows that, with up to nine virtual buttons on five different sides of the smartphone, the proposed virtual buttons can operate with greater than 90% accuracy.

  • Simple and Complete Resynchronization for Wireless Sensor Networks Open Access

    Hiromi YAGIRI  Takeshi OKADOME  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    679-689

    The methods proposed in this paper enable resynchronization when a synchronization deviation occurs in a sensor node without a beacon or an ack in a wireless sensor network under ultra-limited but stable resources such as the energy generated from tiny solar cell batteries. The method for a single-hop network is straightforward; when a receiver does not receive data, it is simply placed in recovery mode, in which the receiver sets its cycle length TB to (b±γ)T, where b is non-negative integer, 0 < γ < 1, and T is its cycle length in normal mode, and in which the receiver sets its active interval WB to a value that satisfies WB ≥ W + γT, where W is its active interval in normal mode. In contrast, a sender stays in normal mode. Resynchronization methods for linear multi-hop and tree-based multi-hop sensor networks are constructed using the method for a single-hop network. All the methods proposed here are complete because they are always able to resynchronize networks. The results of simulations based on the resynchronization methods are given and those of an experiment using actual sensor nodes with wireless modules are also presented, which show that the methods are feasible.

  • The BINDS-Tree: A Space-Partitioning Based Indexing Scheme for Box Queries in Non-Ordered Discrete Data Spaces

    A. K. M. Tauhidul ISLAM  Sakti PRAMANIK  Qiang ZHU  

     
    PAPER

      Pubricized:
    2019/01/16
      Vol:
    E102-D No:4
      Page(s):
    745-758

    In recent years we have witnessed an increasing demand to process queries on large datasets in Non-ordered Discrete Data Spaces (NDDS). In particular, one type of query in an NDDS, called box queries, is used in many emerging applications including error corrections in bioinformatics and network intrusion detection in cybersecurity. Effective indexing methods are necessary for efficiently processing queries on large datasets in disk. However, most existing NDDS indexing methods were not designed for box queries. Several recent indexing methods developed for box queries on a large NDDS dataset in disk are based on the popular data-partitioning approach. Unfortunately, a space-partitioning based indexing scheme, which is more effective for box queries in an NDDS, has not been studied before. In this paper, we propose a novel indexing method based on space-partitioning, called the BINDS-tree, for supporting efficient box queries on a large NDDS dataset in disk. A number of effective strategies such as node split based on minimum span and cross optimal balance, redundancy reduction utilizing a singleton dimension inheritance property, and a space-efficient structure for the split history are incorporated in the constructing algorithm for the BINDS-tree. Experimental results demonstrate that the proposed BINDS-tree significantly improves the box query I/O performance, comparing to that of the state-of-the-artdata-partitioning based NDDS indexing method.

  • A Quality-Level Selection for Adaptive Video Streaming with Scalable Video Coding

    Shungo MORI  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    824-831

    In this paper, we propose a quality-level selection method for adaptive video streaming with scalable video coding (SVC). The proposed method works on the client with the dynamic adaptive streaming over HTTP (DASH) with SVC. The proposed method consists of two components: introducing segment group and a buffer-aware layer selection algorithm. In general, quality of experience (QoE) performance degrades due to stalling (playback buffer underflow), low playback quality, frequent quality-level switching, and extreme-down quality switching. The proposed algorithm focuses on reducing the frequent quality-level switching, and extreme-down quality switching without increasing stalling and degrading playback quality. In the proposed method, a SVC-DASH client selects a layer every G segments, called a segment group to prevent frequent quality-level switching. In addition, the proposed method selects the quality of a layer based on a playback buffer in a layer selection algorithm for preventing extreme-down switching. We implement the proposed method on a real SVC-DASH system and evaluate its performance by subjective evaluations of multiple users. As a result, we confirm that the proposed algorithm can obtain better mean opinion score (MOS) value than a conventional SVC-DASH, and confirm that the proposed algorithm is effective to improve QoE performance in SVC-DASH.

  • A Power-Efficient Pulse-VCO for Chip-Scale Atomic Clock

    Haosheng ZHANG  Aravind THARAYIL NARAYANAN  Hans HERDIAN  Bangan LIU  Rui WU  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Vol:
    E102-C No:4
      Page(s):
    276-286

    This paper presents a high power efficient pulse VCO with tail-filter for the chip-scale atomic clock (CSAC) application. The stringent power and clock stability specifications of next-generation CSAC demand a VCO with ultra-low power consumption and low phase noise. The proposed VCO architecture aims for the high power efficiency, while further reducing the phase noise using tail filtering technique. The VCO has been implemented in a standard 45nm SOI technology for validation. At an oscillation frequency of 5.0GHz, the proposed VCO achieves a phase noise of -120dBc/Hz at 1MHz offset, while consuming 1.35mW. This translates into an FoM of -191dBc/Hz.

  • Effect of Joint Detection on System Throughput in Distributed Antenna Network

    Haruya ISHIKAWA  Yukitoshi SANADA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/08/29
      Vol:
    E102-B No:3
      Page(s):
    641-647

    This paper evaluates the throughput of a distributed antenna network (DAN) with multiple mobile terminal scheduling and the usage of joint maximum-likelihood detection (MLD). Mobile terminals are closer to the desired antennas in the DAN which leads to higher throughput and better frequency utilization efficiency. However, when multiple mobile terminal scheduling is applied to the DAN, interference can occur between transmitted signals from antennas. Therefore, in this research, mobile terminal scheduling along with joint MLD is applied to reduce the effects of interference. A system level simulation shows that the usage of joint MLD in a densely packed DAN provides better system throughput regardless of the numbers of mobile terminals and fading channels.

  • Pre-Weighting Based Contention Resolution Diversity Slotted ALOHA Scheme for Geostationary Earth Orbit Satellite Networks

    Bo ZHAO  Guangliang REN  Huining ZHANG  

     
    PAPER-Satellite Communications

      Pubricized:
    2018/09/10
      Vol:
    E102-B No:3
      Page(s):
    648-658

    Pre-weighting based Contention Resolution Diversity Slotted ALOHA-like (PW-CRDSA-like) schemes with joint multi-user multi-slot detection (JMMD) algorithm are proposed to improve the throughput of random access (RA) in geostationary earth orbit (GEO) satellite networks. The packet and its replicas are weighted by different pre-weighting factors at each user terminal, and are sent in randomly selected slots within a frame. The correlation of channels between user terminals and satellite node in different slots are removed by using pre-weighting factors. At the gateway station, after the decoding processing of CRDSA, the combinations of remained signals in slots that can construct virtual multiple-input multiple-output (MIMO) signal models are found and decoded by the JMMD algorithm. Deadlock problems that can be equivalent to virtual MIMO signal models in the conventional CRDSA-like schemes can be effectively resolved, which improves the throughput of these CRDSA-like schemes. Simulation results show that the PW-CRDSA-like schemes with the JMMD significantly outperform the conventional CRDSA-like schemes in terms of the throughput under equal packet loss ratio (PLR) conditions (e.g. PLR =10-2), and as the number of the transmitted replicas increases, the throughput of the PW-CRDSA-like schemes also increases, and the normalized maximum throughput of the PW-CRDSA-5 (i.e., PW-CRDSA with 5 replicas) scheme can reach 0.95.

381-400hit(4570hit)