The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

581-600hit(4570hit)

  • Interpersonal Coevolution of Body Movements in Daily Face-to-Face Communication

    Taiki OGATA  Naoki HIGO  Takayuki NOZAWA  Eisuke ONO  Kazuo YANO  Koji ARA  Yoshihiro MIYAKE  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2017/07/18
      Vol:
    E100-D No:10
      Page(s):
    2547-2555

    People's body movements in daily face-to-face communication influence each other. For instance, during a heated debate, the participants use more gestures and other body movements, while in a calm discussion they use fewer gestures. This “coevolution” of interpersonal body movements occurs on multiple time scales, like minutes or hours. However, the multi-time-scale coevolution in daily communication is not clear yet. In this paper, we explore the minute-to-minute coevolution of interpersonal body movements in daily communication and investigate the characteristics of this coevolution. We present quantitative data on upper-body movements from thousand test subjects from seven organizations gathered over several months via wearable sensors. The device we employed measured upper-body movements with an accelerometer and the duration of face-to-face communication with an infrared ray sensor on a minute-by-minute basis. We defined a coevolution measure between two people as the number of per-minute changes of their body movement and compared the indices for face-to-face and non-face-to-face situations. We found that on average, the amount of people's body movements changed correspondingly for face-to-face communication and that the average rate of coevolution in the case of face-to-face communication was 3-4% higher than in the case of non-face-to-face situation. These results reveal minute-to-minute coevolution of upper-body movements between people in daily communication. The finding suggests that the coevolution of body movement arises in multiple time scales.

  • A Study on Multi-User Interference Cancellers for Synchronous Optical CDMA Systems — Decision Distance and Bit Error Rate —

    Tomoko K. MATSUSHIMA  Masaki KAKUYAMA  Yuya MURATA  Yasuaki TERAMACHI  Shoichiro YAMASAKI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E100-A No:10
      Page(s):
    2135-2145

    Several kinds of techniques for excellent multi-user interference (MUI) cancellation have been proposed for direct-detection synchronous optical code division multiple access (OCDMA) systems. All these techniques utilize modified prime sequence codes (MPSCs) as signature codes and can remove MUI errors efficiently. In this paper, the features of three typical MUI cancellers are studied and compared in detail. The authors defined the parameter “decision distance” to show the feature of MUI cancellers. The bit error rate performance of each canceller is investigated by computer simulation and compared with that of the basic on-off keying (OOK) scheme without cancellation. Then, we investigate the relationship between the decision distance and the bit error rate performance. It is shown that every canceller has a better bit error rate performance than the basic OOK scheme. Especially, the equal weight orthogonal (EWO) scheme, whose decision distance is the largest, has the best error resistance property of the three MUI cancellers. The results show that the decision distance is a useful index to evaluate the error resistance property of MUI cancellation schemes.

  • An Energy-Efficient Task Scheduling for Near-Realtime Systems with Execution Time Variation

    Takashi NAKADA  Tomoki HATANAKA  Hiroshi UEKI  Masanori HAYASHIKOSHI  Toru SHIMIZU  Hiroshi NAKAMURA  

     
    PAPER-Software System

      Pubricized:
    2017/06/26
      Vol:
    E100-D No:10
      Page(s):
    2493-2504

    Improving energy efficiency is critical for embedded systems in our rapidly evolving information society. Near real-time data processing tasks, such as multimedia streaming applications, exhibit a common fact that their deadline periods are longer than their input intervals due to buffering. In general, executing tasks at lower performance is more energy efficient. On the other hand, higher performance is necessary for huge tasks to meet their deadlines. To minimize the energy consumption while meeting deadlines strictly, adaptive task scheduling including dynamic performance mode selection is very important. In this work, we propose an energy efficient slack-based task scheduling algorithm for such tasks by adapting to task size variations and applying DVFS with the help of statistical analysis. We confirmed that our proposal can further reduce the energy consumption when compared to oracle frame-based scheduling.

  • Analysis of Rotational Motion of Break Arcs Rotated by Radial Magnetic Field in a 48VDC Resistive Circuit

    Jun MATSUOKA  Junya SEKIKAWA  

     
    BRIEF PAPER

      Vol:
    E100-C No:9
      Page(s):
    732-735

    Break arcs are rotated with a radial magnetic field formed by a permanent magnet embedded in a fixed contact. The break arcs are generated in a 48VDC resistive circuit. The circuit current is 10A when the contacts are closed. The polarity of the fixed contact in which the magnet is embedded is changed. The rotational radius and the difference of position between the cathode and anode spots are investigated. The following results are obtained. The cathode spot is moved more easily than the anode spot by the radial magnetic field. The rotational radius of the break arcs is affected by the Lorentz force that is caused by the circumferential component of the arc current and the axial component of the magnetic field. The circumferential component of the arc current is caused by the difference of the positions of the rotating cathode and anode spots.

  • Synthesis and Enumeration of Generalized Shift Registers for Strongly Secure SR-Equivalents

    Hideo FUJIWARA  Katsuya FUJIWARA  

     
    LETTER-Dependable Computing

      Pubricized:
    2017/05/26
      Vol:
    E100-D No:9
      Page(s):
    2232-2236

    In our previous work, we introduced new concepts of secure scan design; shift register equivalent circuits (SR-equivalents, for short) and strongly secure circuits, and also introduced generalized shift registers (GSRs, for short) to apply them to secure scan design. In this paper, we combine both concepts of SR-equivalents and strongly secure circuits and apply them to GSRs, and consider the synthesis problem of strongly secure SR-equivalents using GSRs. We also consider the enumeration problem of GSRs that are strongly secure and SR-equivalent, i.e., the cardinality of the class of strongly secure SR-equivalent GSRs to clarify the security level of the secure scan architecture.

  • Visualizing Web Images Using Fisher Discriminant Locality Preserving Canonical Correlation Analysis

    Kohei TATENO  Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    2005-2016

    A novel dimensionality reduction method, Fisher Discriminant Locality Preserving Canonical Correlation Analysis (FDLP-CCA), for visualizing Web images is presented in this paper. FDLP-CCA can integrate two modalities and discriminate target items in terms of their semantics by considering unique characteristics of the two modalities. In this paper, we focus on Web images with text uploaded on Social Networking Services for these two modalities. Specifically, text features have high discriminate power in terms of semantics. On the other hand, visual features of images give their perceptual relationships. In order to consider both of the above unique characteristics of these two modalities, FDLP-CCA estimates the correlation between the text and visual features with consideration of the cluster structure based on the text features and the local structures based on the visual features. Thus, FDLP-CCA can integrate the different modalities and provide separated manifolds to organize enhanced compactness within each natural cluster.

  • Incorporating Security Constraints into Mixed-Criticality Real-Time Scheduling

    Hyeongboo BAEK  Jinkyu LEE  

     
    PAPER-Software System

      Pubricized:
    2017/05/31
      Vol:
    E100-D No:9
      Page(s):
    2068-2080

    While conventional studies on real-time systems have mostly considered the real-time constraint of real-time systems only, recent research initiatives are trying to incorporate a security constraint into real-time scheduling due to the recognition that the violation of either of two constrains can cause catastrophic losses for humans, the system, and even environment. The focus of most studies, however, is the single-criticality systems, while the security of mixed-criticality systems has received scant attention, even though security is also a critical issue for the design of mixed-criticality systems. In this paper, we address the problem of the information leakage that arises from the shared resources that are used by tasks with different security-levels of mixed-criticality systems. We define a new concept of the security constraint employing a pre-flushing mechanism to cleanse the state of shared resources whenever there is a possibility of the information leakage regarding it. Then, we propose a new non-preemptive real-time scheduling algorithm and a schedulability analysis, which incorporate the security constraint for mixed-criticality systems. Our evaluation demonstrated that a large number of real-time tasks can be scheduled without a significant performance loss under a new security constraint.

  • Image Restoration of JPEG Encoded Images via Block Matching and Wiener Filtering

    Yutaka TAKAGI  Takanori FUJISAWA  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E100-A No:9
      Page(s):
    1993-2000

    In this paper, we propose a method for removing block noise which appears in JPEG (Joint Photographic Experts Group) encoded images. We iteratively perform the 3D wiener filtering and correction of the coefficients. In the wiener filtering, we perform the block matching for each patch in order to get the patches which have high similarities to the reference patch. After wiener filtering, the collected patches are returned to the places where they were and aggregated. We compare the performance of the proposed method to some conventional methods, and show that the proposed method has an excellent performance.

  • Estimation of Dense Displacement by Scale Invariant Polynomial Expansion of Heterogeneous Multi-View Images

    Kazuki SHIBATA  Mehrdad PANAHPOUR TEHERANI  Keita TAKAHASHI  Toshiaki FUJII  

     
    LETTER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    2048-2051

    Several applications for 3-D visualization require dense detection of correspondence for displacement estimation among heterogeneous multi-view images. Due to differences in resolution or sampling density and field of view in the images, estimation of dense displacement is not straight forward. Therefore, we propose a scale invariant polynomial expansion method that can estimate dense displacement between two heterogeneous views. Evaluation on heterogeneous images verifies accuracy of our approach.

  • Automatic Optic Disc Boundary Extraction Based on Saliency Object Detection and Modified Local Intensity Clustering Model in Retinal Images

    Wei ZHOU  Chengdong WU  Yuan GAO  Xiaosheng YU  

     
    LETTER-Image

      Vol:
    E100-A No:9
      Page(s):
    2069-2072

    Accurate optic disc localization and segmentation are two main steps when designing automated screening systems for diabetic retinopathy. In this paper, a novel optic disc detection approach based on saliency object detection and modified local intensity clustering model is proposed. It consists of two stages: in the first stage, the saliency detection technique is introduced to the enhanced retinal image with the aim of locating the optic disc. In the second stage, the optic disc boundary is extracted by the modified Local Intensity Clustering (LIC) model with oval-shaped constrain. The performance of our proposed approach is tested on the public DIARETDB1 database. Compared to the state-of-the-art approaches, the experimental results show the advantages and effectiveness of the proposed approach.

  • On the Key Parameters of the Oscillator-Based Random Source

    Chenyang GUO  Yujie ZHOU  

     
    PAPER-Nonlinear Problems

      Vol:
    E100-A No:9
      Page(s):
    1956-1964

    This paper presents a mathematical model for the oscillator-based true random number generator (TRNG) to study the influence of some key parameters to the randomness of the output sequence. The output of the model is so close to the output of the real design of the TRNG that the model can generate the random bits instead of the analog simulation for research. It will cost less time than the analog simulation and be more convenient for the researchers to change some key parameters in the design. The authors give a method to improve the existing design of the oscillator-based TRNG to deal with the possible bias of the key parameters. The design is fabricated with a 55-nm CMOS process.

  • An Improvement of Scalar Multiplication by Skew Frobenius Map with Multi-Scalar Multiplication for KSS Curve

    Md. Al-Amin KHANDAKER  Yasuyuki NOGAMI  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1838-1845

    Scalar multiplication over higher degree rational point groups is often regarded as the bottleneck for faster pairing based cryptography. This paper has presented a skew Frobenius mapping technique in the sub-field isomorphic sextic twisted curve of Kachisa-Schaefer-Scott (KSS) pairing friendly curve of embedding degree 18 in the context of Ate based pairing. Utilizing the skew Frobenius map along with multi-scalar multiplication procedure, an efficient scalar multiplication method for KSS curve is proposed in the paper. In addition to the theoretic proposal, this paper has also presented a comparative simulation of the proposed approach with plain binary method, sliding window method and non-adjacent form (NAF) for scalar multiplication. The simulation shows that the proposed method is about 60 times faster than plain implementation of other compared methods.

  • On the Security of Non-Interactive Key Exchange against Related-Key Attacks

    Hiraku MORITA  Jacob C.N. SCHULDT  Takahiro MATSUDA  Goichiro HANAOKA  Tetsu IWATA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1910-1923

    Non-Interactive Key Exchange (NIKE) is a cryptographic primitive that allows two users to compute a shared key without any interaction. The Diffie-Hellman key exchange scheme is probably the most well-known example of a NIKE scheme. Freire et al. (PKC 2013) defined four security notions for NIKE schemes, and showed implications among them. In these notions, we consider an adversary that is challenged to distinguish a shared key of a new pair of users from a random value, using only its knowledge of keys shared between other pairs of users. To take into account side-channel attacks such as tampering and fault-injection attacks, Bellare and Kohno (Eurocrypt 2003) formalized related-key attacks (RKA), where stronger adversaries are considered. In this paper, we introduce four RKA security notions for NIKE schemes. In these notions, we consider an adversary that can also manipulate the secret keys of users and obtain shared keys computed under the modified secret keys. We also show implications and separations among the security notions, and prove that one of the NIKE schemes proposed by Freire et al. is secure in the strongest RKA sense in the random oracle model under the Double Strong Diffie-Hellman (DSDH) assumption over the group of signed quadratic residues, which is implied by the factoring assumption.

  • Radio Access Technologies for Broadband Mobile Communications Open Access

    Mamoru SAWAHASHI  Kenichi HIGUCHI  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1674-1687

    This paper describes the broadband radio access techniques for Universal Mobile Terrestrial Systems (UMTS)/Wideband Code Division Multiple Access (W-CDMA), High-Speed Downlink Packet Access (HSDPA)/High-Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), and LTE-Advanced. Major technical pillars are almost identical regardless of the radio access systems of the respective generations. However, the key techniques that provide distinct performance improvements have changed according to the system requirements in each generation. Hence, in this paper, we focus on the key techniques associated with the system requirements. We also describe the requirements, radio access technology candidates, and challenges toward the future 5G systems.

  • Calculation of Lightning-Induced Voltages on Overhead Lines from Oblique Return Stroke Channel above Stratified Lossy Ground in Time Domain

    Xiaojia WANG  Yazhou CHEN  Haojiang WAN  Qingxi YANG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2017/02/17
      Vol:
    E100-B No:8
      Page(s):
    1454-1461

    In this paper, the effect of the tilt angle of return stroke channel and the stratified lossy ground on the lightning-induced voltages on the overhead lines are studied using the modified transmission-line model with linear current decay with height (MTLL). The results show that the lightning-induced voltages from oblique discharge channel are larger than those from the vertical discharge channel, and the peak values of the induced voltages will increase with increasing the tilt angle. When the ground is horizontally stratified, the peak of the induced voltages will increase with increasing the conductivity of the lower layer at different distances. When the upper ground conductivity increases, the voltage peak values will decrease if the overhead line is nearby the lightning strike point and increase if the overhead line is far from the lightning strike point. Moreover, the induced voltages are mainly affected by the conductivity of the lower layer soil when the conductivity of the upper layer ground is smaller than that of the lower layer ground at far distances. When the ground is vertically stratified, the induced voltages are mainly affected by the conductivity of the ground near the strike point when the overhead line and the strike point are located above the same medium; if the overhead line and the strike point are located above different mediums, both of the conductivities of the vertically stratified ground will influence the peak of the induced voltages and the conductivity of the ground which is far from the strike point has much more impact on induced voltages.

  • Power of Enumeration — Recent Topics on BDD/ZDD-Based Techniques for Discrete Structure Manipulation Open Access

    Shin-ichi MINATO  

     
    INVITED PAPER

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1556-1562

    Discrete structure manipulation is a fundamental technique for many problems solved by computers. BDDs/ZDDs have attracted a great deal of attention for twenty years, because those data structures are useful to efficiently manipulate basic discrete structures such as logic functions and sets of combinations. Recently, one of the most interesting research topics related to BDDs/ZDDs is Frontier-based search method, a very efficient algorithm for enumerating and indexing the subsets of a graph to satisfy a given constraint. This work is important because many kinds of practical problems can be efficiently solved by some variations of this algorithm. In this article, we present recent research activity related to BDD and ZDD. We first briefly explain the basic techniques for BDD/ZDD manipulation, and then we present several examples of the state-of-the-art algorithms to show the power of enumeration.

  • An Ultra-Low Voltage CMOS Voltage Controlled Oscillator with Process and Temperature Compensation

    Ting-Chou LU  Ming-Dou KER  Hsiao-Wen ZAN  

     
    PAPER-Electronic Circuits

      Vol:
    E100-C No:8
      Page(s):
    675-683

    Process and temperature variations have become a serious concern for ultra-low voltage (ULV) technology. The clock generator is the essential component for the ULV very-large-scale integration (VLSI). MOSFETs that are operated in the sub-threshold region are widely applied for ULV technology. However, MOSFETs at subthreshold region have relatively high variations with process and temperature. In this paper, process and temperature variations on the clock generators have been studied. This paper presents an ultra-low voltage 2.4GHz CMOS voltage controlled oscillator with temperature and process compensation. A new all-digital auto compensated mechanism to reduce process and temperature variation without any laser trimming is proposed. With the compensated circuit, the VCO frequency-drift is 16.6 times the improvements of the uncompensated one as temperature changes. Furthermore, it also provides low jitter performance.

  • Backscatter Assisted Wireless Powered Communication Networks with Non-Orthogonal Multiple Access

    Bin LYU  Zhen YANG  Guan GUI  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:8
      Page(s):
    1724-1728

    This letter considers a backscatter assisted wireless powered communication network (BAWPCN) with non-orthogonal multiple access (NOMA). This model consists of a hybrid access point (HAP) and multiple users which can work in either backscatter or harvest-then-transmit (HTT) protocol. To fully exploit time for information transmission, the users working in the backscatter protocol are scheduled to reflect modulated signals during the first phase of the HTT protocol which is dedicated for energy transfer. During the second phase, all users working in the HTT protocol transmit information to the HAP simultaneously since NOMA is adopted. Considering both short-term and long-term optimization problems to maximize the system throughput, the optimal resource allocation policies are obtained. Simulation results show that the proposed model can significantly improve the system performance.

  • Investigation on Non-Orthogonal Multiple Access with Reduced Complexity Maximum Likelihood Receiver and Dynamic Resource Allocation

    Yousuke SANO  Kazuaki TAKEDA  Satoshi NAGATA  Takehiro NAKAMURA  Xiaohang CHEN  Anxin LI  Xu ZHANG  Jiang HUILING  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1301-1311

    Non-orthogonal multiple access (NOMA) is a promising multiple access scheme for further improving the spectrum efficiency compared to orthogonal multiple access (OMA) in the 5th Generation (5G) mobile communication systems. As inter-user interference cancellers for NOMA, two kinds of receiver structures are considered. One is the reduced complexity-maximum likelihood receiver (R-ML) and the other is the codeword level interference canceller (CWIC). In this paper, we show that the R-ML is superior to the CWIC in terms of scheduling flexibility. In addition, we propose a link to system (L2S) mapping scheme for the R-ML to conduct a system level evaluation, and show that the proposed scheme accurately predicts the block error rate (BLER) performance of the R-ML. The proposed L2S mapping scheme also demonstrates that the system level throughput performance of the R-ML is higher than that for the CWIC thanks to the scheduling flexibility.

  • APPraiser: A Large Scale Analysis of Android Clone Apps

    Yuta ISHII  Takuya WATANABE  Mitsuaki AKIYAMA  Tatsuya MORI  

     
    PAPER-Program Analysis

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1703-1713

    Android is one of the most popular mobile device platforms. However, since Android apps can be disassembled easily, attackers inject additional advertisements or malicious codes to the original apps and redistribute them. There are a non-negligible number of such repackaged apps. We generally call those malicious repackaged apps “clones.” However, there are apps that are not clones but are similar to each other. We call such apps “relatives.” In this work, we developed a framework called APPraiser that extracts similar apps and classifies them into clones and relatives from the large dataset. We used the APPraiser framework to study over 1.3 million apps collected from both official and third-party marketplaces. Our extensive analysis revealed the following findings: In the official marketplace, 79% of similar apps were attributed to relatives, while in the third-party marketplace, 50% of similar apps were attributed to clones. The majority of relatives are apps developed by prolific developers in both marketplaces. We also found that in the third-party market, of the clones that were originally published in the official market, 76% of them are malware.

581-600hit(4570hit)