The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

361-380hit(4570hit)

  • Localization Method Using Received Signal Strength for Wireless Power Transmission of the Capsule Endoscope Open Access

    Daijiro HIYOSHI  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/02/18
      Vol:
    E102-B No:8
      Page(s):
    1660-1667

    In recent years, capsule endoscopy has attracted attention as one of the medical devices that examine internal digestive tracts without burdening patients. Wireless power transmission of the capsule endoscope has been researched now, and the power transmission efficiency can be improved by knowing the capsule location. In this paper, we develop a localization method wireless power transmission. Therefore, a simple algorithm for using received signal strength (RSS) has been developed so that position estimation can be performed in real time, and the performance is evaluated by performing three-dimensional localization with eight receiving antennas.

  • Transmission Line Coupler: High-Speed Interface for Non-Contact Connecter Open Access

    Mototsugu HAMADA  Tadahiro KURODA  

     
    INVITED PAPER

      Vol:
    E102-C No:7
      Page(s):
    501-508

    This paper describes transmission line couplers for non-contact connecters. Their characteristics are formulated in closed forms and design methodologies are presented. As their applications, three different types of transmission line couplers, two-fold transmission line coupler, single-ended to differential conversion transmission line coupler, and rotatable transmission line coupler are reviewed.

  • A 0.3-to-5.5 GHz Digital Frequency Discriminator IC with Time to Digital Converter and Edge Counter for Instantaneous Frequency Measurement

    Akihito HIRAI  Koji TSUTSUMI  Hideyuki NAKAMIZO  Eiji TANIGUCHI  Kenichi TAJIMA  Kazutomi MORI  Masaomi TSURU  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Vol:
    E102-C No:7
      Page(s):
    547-557

    In this paper, a high-frequency resolution Digital Frequency Discriminator (DFD) IC using a Time to Digital Converter (TDC) and an edge counter for Instantaneous Frequency Measurement (IFM) is proposed. In the proposed DFD, the TDC measures the time of the maximum periods of divided RF short pulse signals, and the edge counter counts the maximum number of periods of the signal. By measuring the multiple periods with the TDC and the edge counter, the proposed DFD improves the frequency resolution compared with that of the measuring one period because it is proportional to reciprocal of the measurement time of TDC. The DFD was fabricated using 0.18-um SiGe-BiCMOS. Frequency accuracy below 0.39MHz and frequency precision below 1.58 MHz-RMS were achieved during 50 ns detection time in 0.3 GHz to 5.5 GHz band with the temperature range from -40 to 85 degrees.

  • Model Checking in the Presence of Schedulers Using a Domain-Specific Language for Scheduling Policies

    Nhat-Hoa TRAN  Yuki CHIBA  Toshiaki AOKI  

     
    PAPER-Software System

      Pubricized:
    2019/03/29
      Vol:
    E102-D No:7
      Page(s):
    1280-1295

    A concurrent system consists of multiple processes that are run simultaneously. The execution orders of these processes are defined by a scheduler. In model checking techniques, the scheduling policy is closely related to the search algorithm that explores all of the system states. To ensure the correctness of the system, the scheduling policy needs to be taken into account during the verification. Current approaches, which use fixed strategies, are only capable of limited kinds of policies and are difficult to extend to handle the variations of the schedulers. To address these problems, we propose a method using a domain-specific language (DSL) for the succinct specification of different scheduling policies. Necessary artifacts are automatically generated from the specification to analyze the behaviors of the system. We also propose a search algorithm for exploring the state space. Based on this method, we develop a tool to verify the system with the scheduler. Our experiments show that we could serve the variations of the schedulers easily and verify the systems accurately.

  • Dynamic Performance Adjustment of CPU and GPU in a Gaming Notebook at the Battery Mode

    Chun-Hung CHENG  Ying-Wen BAI  

     
    PAPER-Computer System

      Pubricized:
    2019/03/27
      Vol:
    E102-D No:7
      Page(s):
    1257-1270

    This new design uses a low power embedded controller (EC) in cooperation with the BIOS of a notebook (NB) computer, both to accomplish dynamic adjustment and to maintain a required performance level of the battery mode of the notebook. In order to extend the operation time at the battery mode, in general, the notebook computer will directly reduce the clock rate and then reduce the performance. This design can obtain the necessary balance of the performance and the power consumption by using both the EC and the BIOS cooperatively to implement the dynamic control of both the CPU and the GPU frequency to maintain the system performance at a sufficient level for a high speed and high resolution video game. In contrast, in order to maintain a certain notebook performance, in terms of battery life it will be necessary to make some trade-offs.

  • Fast Computation with Efficient Object Data Distribution for Large-Scale Hologram Generation on a Multi-GPU Cluster Open Access

    Takanobu BABA  Shinpei WATANABE  Boaz JESSIE JACKIN  Kanemitsu OOTSU  Takeshi OHKAWA  Takashi YOKOTA  Yoshio HAYASAKI  Toyohiko YATAGAI  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/03/29
      Vol:
    E102-D No:7
      Page(s):
    1310-1320

    The 3D holographic display has long been expected as a future human interface as it does not require users to wear special devices. However, its heavy computation requirement prevents the realization of such displays. A recent study says that objects and holograms with several giga-pixels should be processed in real time for the realization of high resolution and wide view angle. To this problem, first, we have adapted a conventional FFT algorithm to a GPU cluster environment in order to avoid heavy inter-node communications. Then, we have applied several single-node and multi-node optimization and parallelization techniques. The single-node optimizations include a change of the way of object decomposition, reduction of data transfer between the CPU and GPU, kernel integration, stream processing, and utilization of multiple GPUs within a node. The multi-node optimizations include distribution methods of object data from host node to the other nodes. Experimental results show that intra-node optimizations attain 11.52 times speed-up from the original single node code. Further, multi-node optimizations using 8 nodes, 2 GPUs per node, attain an execution time of 4.28 sec for generating a 1.6 giga-pixel hologram from a 3.2 giga-pixel object. It means a 237.92 times speed-up of the sequential processing by CPU and 41.78 times speed-up of multi-threaded execution on multicore-CPU, using a conventional FFT-based algorithm.

  • Experimental Validation of Conifer and Broad-Leaf Tree Classification Using High Resolution PolSAR Data above X-Band

    Yoshio YAMAGUCHI  Yuto MINETANI  Maito UMEMURA  Hiroyoshi YAMADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/01/09
      Vol:
    E102-B No:7
      Page(s):
    1345-1350

    This paper presents a conifer and broad-leaf tree classification scheme that processes high resolution polarimetric synthetic aperture data above X-band. To validate the proposal, fully polarimetric measurements are conducted in a precisely controlled environment to examine the difference between the scattering mechanisms of conifer and broad-leaf trees at 15GHz. With 3.75cm range resolution, scattering matrices of two tree types were measured by a vector network analyzer. Polarimetric analyses using the 4-component scattering power decomposition and alpha-bar angle of eigenvalue decomposition yielded clear distinction between the two tree types. This scheme was also applied to an X-band Pi-SAR2 data set. The results confirm that it is possible to distinguish between tree types using fully polarimetric and high-resolution data above X-band.

  • Recognition of Moving Object in High Dynamic Scene for Visual Prosthesis

    Fei GUO  Yuan YANG  Yang XIAO  Yong GAO  Ningmei YU  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1321-1331

    Currently, visual perceptions generated by visual prosthesis are low resolution with unruly color and restricted grayscale. This severely restricts the ability of prosthetic implant to complete visual tasks in daily scenes. Some studies explore existing image processing techniques to improve the percepts of objects in prosthetic vision. However, most of them extract the moving objects and optimize the visual percepts in general dynamic scenes. The application of visual prosthesis in daily life scenes with high dynamic is greatly limited. Hence, in this study, a novel unsupervised moving object segmentation model is proposed to automatically extract the moving objects in high dynamic scene. In this model, foreground cues with spatiotemporal edge features and background cues with boundary-prior are exploited, the moving object proximity map are generated in dynamic scene according to the manifold ranking function. Moreover, the foreground and background cues are ranked simultaneously, and the moving objects are extracted by the two ranking maps integration. The evaluation experiment indicates that the proposed method can uniformly highlight the moving object and keep good boundaries in high dynamic scene with other methods. Based on this model, two optimization strategies are proposed to improve the perception of moving objects under simulated prosthetic vision. Experimental results demonstrate that the introduction of optimization strategies based on the moving object segmentation model can efficiently segment and enhance moving objects in high dynamic scene, and significantly improve the recognition performance of moving objects for the blind.

  • Advances in Voltage-Controlled-Oscillator-Based ΔΣ ADCs Open Access

    Shaolan LI  Arindam SANYAL  Kyoungtae LEE  Yeonam YOON  Xiyuan TANG  Yi ZHONG  Kareem RAGAB  Nan SUN  

     
    INVITED PAPER

      Vol:
    E102-C No:7
      Page(s):
    509-519

    Ring voltage-controlled-oscillators (VCOs) are increasingly being used to design ΔΣ ADCs. They have the merits of simple, highly digital and low-voltage tolerant, making them attractive alternatives for the classic scaling-unfriendly operational-amplifier-based methodology. This paper aims to provide a summary on the advancement of VCO-based ΔΣ ADCs. The scope of this paper includes the basics and motivations behind the VCO-based ADCs, followed by a survey covering a wide range of architectures and circuit techniques in both continuous-time (CT) and discrete-time (DT) implementation, and will discuss the key insights behind the contributions and drawbacks of these architectures.

  • A Pulse-Tail-Feedback LC-VCO with 700Hz Flicker Noise Corner and -195dBc FoM Open Access

    Aravind Tharayil NARAYANAN  Kenichi OKADA  

     
    PAPER-Electronic Circuits

      Vol:
    E102-C No:7
      Page(s):
    595-606

    This paper proposes a pulse-tail-feedback VCO, in which the tail transistor is driven using pulse-shaped voltage signals with rail-to-rail swing. The proposed pulse-tail-feedback (PTFB) VCO relies on reducing the current conduction period of the tail transistor and operating the tail transistors in triode region for reducing the flicker and thermal noise from the active elements. Mathematical analysis and circuit level simulations of the phase noise mechanism in the proposed PTFB-VCO is also presented in this paper for validating the effectiveness of the proposed technique. A prototype LC-VCO with the proposed PTFB technique is fabricated in a standard 180nm CMOS. Laboratory measurement shows a power consumption of 1.35mW from a 1.2V supply at 4.6GHz. The proposed PTFB-VCO achieves a flicker corner of 700Hz, which enables the VCO to maintain a fairly constant figure-of-merit (FoM) of -195dB within a wide offset frequency range of 1kHz-10MHz.

  • MTTF-Aware Design Methodology of Adaptively Voltage Scaled Circuit with Timing Error Predictive Flip-Flop

    Yutaka MASUDA  Masanori HASHIMOTO  

     
    PAPER

      Vol:
    E102-A No:7
      Page(s):
    867-877

    Adaptive voltage scaling is a promising approach to overcome manufacturing variability, dynamic environmental fluctuation, and aging. This paper focuses on error prediction based adaptive voltage scaling (EP-AVS) and proposes a mean time to failure (MTTF) aware design methodology for EP-AVS circuits. Main contributions of this work include (1) optimization of both voltage-scaled circuit and voltage control logic, and (2) quantitative evaluation of power saving for practically long MTTF. Experimental results show that the proposed EP-AVS design methodology achieves 38.0% power saving while satisfying given target MTTF.

  • Threshold Auto-Tuning Metric Learning

    Rachelle RIVERO  Yuya ONUMA  Tsuyoshi KATO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/03/04
      Vol:
    E102-D No:6
      Page(s):
    1163-1170

    It has been reported repeatedly that discriminative learning of distance metric boosts the pattern recognition performance. Although the ITML (Information Theoretic Metric Learning)-based methods enjoy an advantage that the Bregman projection framework can be applied for optimization of distance metric, a weak point of ITML-based methods is that the distance threshold for similarity/dissimilarity constraints must be determined manually, onto which the generalization performance is sensitive. In this paper, we present a new formulation of metric learning algorithm in which the distance threshold is optimized together. Since the optimization is still in the Bregman projection framework, the Dykstra algorithm can be applied for optimization. A nonlinear equation has to be solved to project the solution onto a half-space in each iteration. We have developed an efficient technique for projection onto a half-space. We empirically show that although the distance threshold is automatically tuned for the proposed metric learning algorithm, the accuracy of pattern recognition for the proposed algorithm is comparable, if not better, to the existing metric learning methods.

  • Improvement of General Secret Sharing Scheme Reducing Shares Distributed to Specified Participants

    Kouya TOCHIKUBO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:6
      Page(s):
    808-817

    In secret sharing schemes for general access structures, an important issue is the number of shares distributed to each participant. However, in general, the existing schemes are impractical in this respect when the size of the access structure is very large. In 2015, a secret sharing scheme that can reduce the number of shares distributed to specified participants was proposed (the scheme A of T15). In this scheme, we can select a subset of participants and reduce the number of shares distributed to any participant who belongs to the selected subset though this scheme cannot reduce the number of shares distributed to every participant. In other words, this scheme cannot reduce the number of shares distributed to each participant who does not belong to the selected subset. In this paper, we modify the scheme A of T15 and propose a new secret sharing scheme realizing general access structures. The proposed scheme can reduce the number of shares distributed to each participant who does not belong to the selected subset as well. That is, the proposed scheme is more efficient than the scheme A of T15.

  • Low Temperature Formation of Pd2Si with TiN Encapsulating Layer and Its Application to Dopant Segregation Process

    Rengie Mark D. MAILIG  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E102-C No:6
      Page(s):
    447-452

    We investigated the low temperature formation of Pd2Si on Si(100) with TiN encapsulating layer formed at 500°C/1 min. Furthermore, the dopant segregation process was performed with ion dose of 1x1015 cm-2 for B+. The uniform Pd2Si was successfully formed with low sheet resistance of 10.4 Ω/sq. Meanwhile, the PtSi formed on Si(100) showed rough surface morphology if the silicidation temperature was 500°C. The estimated Schottky barrier height to hole of 0.20 eV (qφBp) was realized for n-Si(100).

  • Design of Integrated High Voltage Pulse Generator for Medical Ultrasound Transmitters

    Deng-Fong LU  Chin HSIA  Jian-Chiun LIOU  Yen-Chung HUANG  

     
    PAPER

      Pubricized:
    2018/12/28
      Vol:
    E102-B No:6
      Page(s):
    1121-1127

    Design of an equivalent slew-rate monolithic pulse generator using bipolar-CMOS-DMOS (BCD) technology for medical ultrasound transmitters is presented in this paper. The pulse generator employs a floating capacitive coupling level-shifter architecture to produce a high-voltage (Vpp=80V) output. The performance of equivalent slew-rate in the rising and falling edge is achieved by carefully choosing the value of coupling capacitors and the size of the final stage high-voltage MOSFETs of the pulse generator. The measured output pulses show the rising and falling time of 8.6nsec and 8.5nsec, respectively with second harmonic distortion down to -40dBc, indicating the designed pulse generator can be used for advanced ultrasonic harmonic imaging systems.

  • Burst-Mode CMOS Transimpedance Amplifier Based on a Regulated-Cascode Circuit with Gain-Mode Switching

    Takuya KOJIMA  Mamoru KUNIEDA  Makoto NAKAMURA  Daisuke ITO  Keiji KISHINE  

     
    LETTER-Circuit Theory

      Vol:
    E102-A No:6
      Page(s):
    845-848

    We present a novel burst-mode transimpedance amplifier (TIA) with a gain-mode switching. The proposed TIA utilizes a regulated-cascode (RGC) input stage for broadband characteristics. To expand a dynamic range, the RGC controls a linear operating range depending on transimpedance gains by adjusting bias conditions. This TIA is implemented using the 0.18μm-CMOS technology. The experimental results show that the proposed TIA IC has a good eye-opening and can respond quickly to the burst data.

  • In situ Observation of Immobilization of Cytochrome c into Hydrophobic DNA Nano-Film

    Naoki MATSUDA  Hirotaka OKABE  Ayako OMURA  Miki NAKANO  Koji MIYAKE  Toshihiko NAGAMURA  Hideki KAWAI  

     
    BRIEF PAPER

      Vol:
    E102-C No:6
      Page(s):
    471-474

    Hydrophobic DNA (H-DNA) nano-film was formed as the surface modifier on a thin glass plate working as a slab optical waveguide (SOWF). Cytochrom c (cytc) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 30 minutes. From SOWG absorption spectral changes during automated solution exchange (SE) processes, it was found that about 28.1% of cytc molecules was immobilized in the H-DNA nano-film with keeping their reduction functionality by reducing reagent.

  • Millimeter-Wave Scattering and Transmission of Misaligned Dual Metallic Grating Screens

    Hyun Ho PARK  Seungyoung AHN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/12/03
      Vol:
    E102-B No:6
      Page(s):
    1180-1187

    This paper presents a rigorous analysis of the electromagnetic scattering and transmission of misaligned dual metallic grating screens. The Fourier transform and the mode-matching technique are employed to obtain an analytical solution. Numerical results show that misaligned dual metal grating screens exhibit asymmetric scattering and transmission properties with respect to the scattering and transmission angles. Parametric studies are conducted in terms of the lateral displacement and vertical distance between the dual metallic grating screens. For validation, the proposed method is compared with a numerical simulation and good agreement has been achieved.

  • Medical Healthcare Network Platform and Big Data Analysis Based on Integrated ICT and Data Science with Regulatory Science Open Access

    Ryuji KOHNO  Takumi KOBAYASHI  Chika SUGIMOTO  Yukihiro KINJO  Matti HÄMÄLÄINEN  Jari IINATTI  

     
    INVITED PAPER

      Pubricized:
    2018/12/19
      Vol:
    E102-B No:6
      Page(s):
    1078-1087

    This paper provides perspectives for future medical healthcare social services and businesses that integrate advanced information and communication technology (ICT) and data science. First, we propose a universal medical healthcare platform that consists of wireless body area network (BAN), cloud network and edge computer, big data mining server and repository with machine learning. Technical aspects of the platform are discussed, including the requirements of reliability, safety and security, i.e., so-called dependability. In addition, novel technologies for satisfying the requirements are introduced. Then primary uses of the platform for personalized medicine and regulatory compliance, and its secondary uses for commercial business and sustainable operation are discussed. We are aiming at operate the universal medical healthcare platform, which is based on the principle of regulatory science, regionally and globally. In this paper, trials carried out in Kanagawa, Japan and Oulu, Finland will be revealed to illustrate a future medical healthcare social infrastructure by expanding it to Asia-Pacific, Europe and the rest of the world. We are representing the activities of Kanagawa medical device regulatory science center and a joint proposal on security in the dependable medical healthcare platform. Novel schemes of ubiquitous rehabilitation based on analyses of the training effect by remote monitoring of activities and machine learning of patient's electrocardiography (ECG) with a neural network are proposed and briefly investigated.

  • Dependable Wireless Feedback Loop Control Schemes Considering Errors and Delay in Sensing Data and Control Command Packets

    Satoshi SEIMIYA  Takumi KOBAYASHI  Ryuji KOHNO  

     
    PAPER

      Pubricized:
    2018/12/19
      Vol:
    E102-B No:6
      Page(s):
    1113-1120

    In this study, under the assumption that a robot (1) has a remotely controllable yawing camera and (2) moves in a uniform linear motion, we propose and investigate how to improve the target recognition rate with the camera, by using wireless feedback loop control. We derive the allowable data rate theoretically, and, from the viewpoint of error and delay control, we propose and evaluate QoS-Hybrid ARQ schemes under data rate constraints. Specifically, the theoretical analyses derive the maximum data rate for sensing and control based on the channel capacity is derived with the Shannon-Hartley theorem and the path-loss channel model inside the human body, i.e. CM2 in IEEE 802.15.6 standard. Then, the adaptive error and delay control schemes, i.e. QoS-HARQ, are proposed considering the two constraints: the maximum data rate and the velocity of the camera's movement. For the performance evaluations, with the 3D robot simulator GAZEBO, we evaluated our proposed schemes in the two scenarios: the static environment and the dynamic environment. The results yield insights into how to improve the recognition rate considerably in each situation.

361-380hit(4570hit)