The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

13901-13920hit(16314hit)

  • Current-Mode Active RC Filters Using Current Followers

    Mitsuo OKINE  Noriaki KATSUHARA  

     
    LETTER

      Vol:
    E81-A No:2
      Page(s):
    265-267

    In this letter, a realization of current-mode active filter using current followers as active element is described. We show the constructions of second-order lowpass, highpass and bandpass filters. The high-order filters can be realized by a cascade connection of these second filters. As examples, the second-order lowpass and highpass filters are designed for frequency of 5 MHz. The effectiveness of the proposed method is demonstrated through SPICE simulation.

  • Generation of Low Timing Jitter, Sub-Picosecond Optical Pulses Using a Gain-Switched DFB-LD with CW Light Injection and a Nonlinear Optical Loop Mirror

    Hiroshi OHTA  Seiji NOGIWA  Haruo CHIBA  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    166-168

    The timing jitter of the optical pulse from a gain-switched laser diode is reduced by CW light injection. The reduction ratio of the timing jitter is 5. 5. The pulse width was compressed by a nonlinear optical loop mirror to a pedestal-free optical pulse with a pulse width of 420 fs.

  • Realization of Universal Active Complex Filter Using CCIIs and CFCCIIs

    Xiaoxing ZHANG  Xiayu NI  Masahiro IWAHASHI  Noriyoshi KAMBAYASHI  

     
    PAPER

      Vol:
    E81-A No:2
      Page(s):
    244-251

    In this paper, two universal building blocks for complex filter using CCIIs, CFCCIIs, grounded resistors and grounded capacitors are presented. These can be used to realize various complex bandpass filters with arbitrary order. The paper shows that the response error of the proposed circuit caused by nonideality of active components is more easily compensated than that of the conventional one employing op-amps, and that the sensitivities for all components are relatively small. Experimental results are used for verifying the validity of the proposed circuits.

  • A 2-GHz 60-dB Dynamic-Range Si Logarithmic/Limiting Amplifier with Low Phase Deviations

    Tsuneo TSUKAHARA  Masayuki ISHIKAWA  

     
    PAPER

      Vol:
    E81-A No:2
      Page(s):
    218-223

    A 2-GHz monolithic Si-bipolar logarithmic/ limiting amplifier is described. It features a waveform-dependent current phase shifter that compensates for the intrinsic dependence of unit-amplifier phase shifts on input signal amplitudes and layout techniques that minimize crosstalk in Si substrate. The amplifier dissipates 250 mW at a 3-V supply, which is less than 1/4 of that of previously reported ICs. The dynamic range of a received signal strength indicator (RSSI) is 60 dB and the limited-output phase deviation is less than 7 deg. at 2 GHz. Therefore, this amplifier is quite suitable for single-conversion transceivers for broadband wireless access systems.

  • A Simulation Scheme for Estimating Deadline of Real-Time Task Modeled in Timed Petri Net

    Won-Ho CHUNG  Hyunsoo YOON  

     
    PAPER-Modeling and Simulation

      Vol:
    E81-A No:2
      Page(s):
    288-294

    Estimating the deadline of a real-time task is a necessary prerequisite to the applications that have strict timing constraints, such as real-time systems design. This paper shows how Monte-Carlo simulation can be used as a space-efficient way of analyzing Timed Petri nets to predict whether the system specified can satisfy its real-time deadlines. For the purpose, Extended Timed Petri Net (XTPN), an extension of conventional Timed Petri net, and its execution rule, using Monte-Carlo technique, are newly defined. A simple simulation scheme with less memory space is presented as a way of estimating the deadline of a real-time task modeled in XTPN. And the comparison between the analytical and simulation results is given. The problem addressed here is to find the probabilities of meeting given deadlines.

  • On Analysis of Acceptable Region of a Statistical Multiplexer Based on Fractional Brownian Traffic Models

    Suhono HARSO SUPANGKAT  Shuji KAWASAKI  Hiroyoshi MORITA  

     
    PAPER-Modeling and Simulation

      Vol:
    E81-A No:2
      Page(s):
    295-303

    We consider statistical multiplexing for various types of input data with different statistics in an integrated multimedia system such as ATM networks. The system is assumed to have a constant service rate and a finite buffer. The bit-rate of each data input is variable and is modeled by a fractional Brownian motion process. Under a criterion of quality of service, we obtain an acceptable region of statistical multiplexing. We introduce a new method of investigating the acceptable region of a statistical multiplexer. The results show that transmitting multitype input processes will increase the multiplexing gain.

  • Nonlinear Chirped Pulse in a Dispersion Compensated System

    Yuji KODAMA  

     
    PAPER-Soliton Transmission

      Vol:
    E81-C No:2
      Page(s):
    221-225

    We study nonlinear pulse propagation in an optical transmission system with dispersion compensation. This is particularly important for designing an ultra-fast long-haul communication system in the next generation. There exists a quasi-stationary pulse solution in such a system whose width and chirp are rapidly oscillating with the period of dispersion compensation. This pulse also has several new features such as enhanced power when compared with the soliton case with a uniform dispersion and a deformation from the sech-shape of soliton. We use the averaging method, and the averaged equation to describe the core of the pulse solution is shown to be the nonlinear Schrodinger equation having a nontrapping quadratic potential. Because of this potential, a pulse propagating in such a system eventually decays into dispersive waves in a way similar to the tunneling effect. However in a practical situation, the tunneling effect is estimated to be small, and the decay may be neglected.

  • Perceptual Contributions of Static and Dynamic Features of Vocal Tract Characteristics to Talker Individuality

    Weizhong ZHU  Hideki KASUYA  

     
    PAPER-Acoustics

      Vol:
    E81-A No:2
      Page(s):
    268-274

    Experiments were performed to investigate perceptual contributions of static and dynamic features of vocal tract characteristics to talker individuality. An ARX (Auto-regressive with exogenous input) speech production model was used to extract separately voice source and vocal tract parameters from a Japanese sentence, /aoiueoie/ ("Say blue top" in English) uttered by three males. The Discrete Cosine Transform (DCT) was applied to resolve formant trajectories of the speech signal into static and dynamic components. The perceptual contributions were quantitatively studied by systematically replacing the corresponding formant components of the sentences between the three talkers. Results of the experiments show that the static (average) feature of the vocal tract is a primary cue to talker individuality.

  • Theoretical and Experimental Study of Soliton Transmission in Dispersion Managed Links

    Thierry GEORGES  Francois FAVRE  Daniel Le GUEN  

     
    PAPER-Soliton Transmission

      Vol:
    E81-C No:2
      Page(s):
    226-231

    The propagation of solitons in a dispersion managed link can be mainly modeled with the evolution of two parameters γ and C, related to the spectral width and the chirp. Steady propagations are shown to be possible if the average dispersion lies in the anomalous domain. With the same conditions, periodical propagations are both theoretically and experimentally demonstrated. With the help of a perturbation theory, the jitter and the signal to noise ratio are theoretically evaluated. The latter is experimentally shown to be the low power limit of terrestrial systems based on non dispersion shifted fiber. Finally, wavelength and power margins of a single channel 20 Gbit/s soliton transmission over 11 amplifier spans of 102 km show that a 400 Gbit/s Wavelength Division Multiplexed transmission could be envisaged over the same distance.

  • 10 Gbit/s-Soliton Transmission over 5700 km in Dispersion Compensated Standard Fiber Systems

    Hitoshi MURAI  Makoto SHIKATA  Kazuo TANAKA  Hiromi T. YAMADA  Hiroyuki YAMAZAKI  Yukihiro OZEKI  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    232-234

    The reduction of Soliton-soliton interaction to stabilize the soliton pulse propagation in the periodic dispersion-compensated standard fiber system using optical bandpass filter has been investigated by numerical simulation, and experimentally 10 Gbit/s soliton transmission was realized without fine tuning dispersion management over 5700 km, using appropriate optical bandpass filters and polarization scrambler.

  • The Effect of Sampling-Pulse Pedestals on Temporal Resolution in Electro-Optic Sampling

    Makoto YAITA  Tadao NAGATSUMA  

     
    PAPER-Femtosecond Pulse Compression, Amplification and Manipulation

      Vol:
    E81-C No:2
      Page(s):
    254-259

    The effect of sampling-pulse pedestals, generated by pulse compression, on the temporal resolution in electro-optic (EO) sampling is studied both theoretically and experimentally. Analysis is made on how the pedestals degrade a measurement bandwidth and a temporal waveform. Based on the analysis, a practical guideline on the suppression of pedestals is also given. Gain-switched laser diode (LD) pulses adiabatically soliton-compressed using a dispersion decreasing fiber are used to confirm the theoretical results, and are successfully applied to high-temporal-resolution (>100 GHz) EO sampling measurements.

  • The Shortest KLM Ti:Sapphire Laser Pulse Started by a Semiconductor Saturable Absorber Mirror (SESAM)

    Dirk H. SUTTER  Isabella D. JUNG  Nicolai MATUSCHEK  Francois MORIER-GENOUD  Franz X. KARTNER  Ursula KELLER  Volker SCHEUER  Markus TILSCH  Theo TSCHUDI  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    123-124

    This paper summarizes our recent efforts in modelocking Ti:sapphire lasers with semiconductor saturable absorber mirrors (SESAMs). We present the shortest optical pulses ever generated directly from a laser. The modelocking build-up time (T BU) of 60 µs is, to our knowledge, the shortest reported for a passively modelocked KLM laser to date.

  • Ultrashort Optical Pulse Shaping by Electrooptic Synthesizer

    Dae-Sik KIM  Tattee KHAYIM  Akihiro MORIMOTO  Tetsuro KOBAYASHI  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    260-263

    We demonstrate an electrooptic synthesis technique for generating arbitrarily shaped short optical pulses from a CW narrow linewidth laser. For the optical pulse shaping, a large-amplitude electrooptic phase modulator is specially fabricated by employing the quasi-velocity-matching. The phase modulated light having sidebands as wide as 1 THz is separated and phase-only-controlled spatially by a liquid crystal modulator array. After composing the light by using a grating, nearly 1. 2 ps of Fourier-transform-limited optical pulses is obtained.

  • A Low Power Dissipation Technique for a Low Voltage OTA

    Eitake IBARAGI  Akira HYOGO  Keitaro SEKINE  

     
    PAPER

      Vol:
    E81-A No:2
      Page(s):
    237-243

    This paper proposes a novel low power dissipation technique for a low voltage OTA. A conventional low power OTA with a class AB input stage is not suitable for a low voltage operation (1. 5 V supply voltages), because it uses composite transistors (referred to CMOS pair) which has a large threshold voltage. On the other hand, the tail-current type OTA needs a large tail-current value to obtain a sufficient input range at the expense of power dissipation. Therefore, the conventional tail-current type OTA has a trade-off between the input range and the power dissipation to the tail-current value. The trade-off can be eliminated by the proposed technique. The technique exploits negative feedback control including a current amplifier and a minimum current selecting circuit. The proposed technique was used on Wang's OTA to create another OTA, named Low Power Wang's OTA. Also, SPICE simulations are used to verify the efficiency of Low Power Wang's OTA. Although the static power of Low Power Wang's OTA is 122 µW, it has a sufficient input range, whereas conventional Wang's OTA needs 703 µW to obtain a sufficient input range. However, we can say that as the input signal gets larger, the power of Low Power Wang's OTA becomes larger.

  • Consideration on the Optimum Interpolation and Design of Linear Phase Filterbanks with High Attenuation in Stop Bands

    Takuro KIDA  Yuichi KIDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:2
      Page(s):
    275-287

    In the literatures [5] and [10], a systematic discussion is presented with respect to the optimum interpolation of multi-dimensional signals. However, the measures of error in these literatures are defined only in each limited block separately. Further, in these literatures, most of the discussion is limited to theoretical treatment and, for example, realization of higher order linear phase FIR filter bank is not considered. In this paper, we will present the optimum interpolation functions minimizing various measures of approximation error simultaneously. Firstly, we outline necessary formulation for the time-limited interpolation functions ψm(t) (m=0,1,. . . ,M-1) realizing the optimum approximation in each limited block separately, where m are the index numbers for analysis filters. Secondly, under some assumptions, we will present analytic or piece-wise analytic interpolation functions φm(t) minimizing various measures of approximation error defined at discrete time samples n=0, 1, 2,. . . . In this discussion, φm(n) are equal to ψm(n) n=0, 1, 2,. . . . Since ψm(t) are time-limited, φm(n) vanish outside of finite set of n. Hence, in designing discrete filter bank, one can use FIR filters if one wants to realize discrete synthesis filters which impulse responses are φm(n). Finally, we will present one-dimensional linear phase M channel FIR filter bank with high attenuation characteristic in each stop band. In this design, we adopt the cosine-sine modulation initially, and then, use the iterative approximation based on the reciprocal property.

  • New Formulas on Orthogonal Functionals of Stochastic Binary Sequence with Unequal Probability

    Lan GAO  Junichi NAKAYAMA  

     
    LETTER-Nonlinear Problems

      Vol:
    E81-A No:2
      Page(s):
    347-350

    This paper deals with an orthogonal functional expansion of a non-linear stochastic functional of a stationary binary sequence taking 1 with unequal probability. Several mathematical formulas, such as multivariate orthogonal polynomials, recurrence formula and generating function, are given in explicit form. A formula of an orthogonal functional expansion for a stochastic functional is presented; the completeness of expansion is discussed in Appendix.

  • Simulation & Measurement of TCP/IP over ATM Wide Area Networks

    Georgios Y. LAZAROU  Victor S. FROST  Joseph B. EVANS  Douglas NIEHAUS  

     
    PAPER-ATM switch interworking

      Vol:
    E81-B No:2
      Page(s):
    307-314

    Predicting the performance of high speed wide area ATM networks (WANs) is a difficult task. Evaluating the performance of these systems by means of mathematical models is not yet feasible. As a result, the creation of simulation models is usually the only means of predicting and evaluating the performance of such systems. In this paper, we use measurements to validate simulation models of TCP/IP over high speed ATM wide area networks. Validation of simulations with measurements is not common; however, it is needed so that simulation models can be used with confidence to accurately characterize the performance of ATM WANs. In addition, the appropriate level of complexity of the simulation models needs to be determined. The results show that under appropriate conditions simulation models can accurately predict the performance of complex high speed ATM wide area networks. This work also shows that the user perceived performance is dependent on host processing demands.

  • Reliability Analysis of Disk Array Organizations by Considering Uncorrectable Bit Errors

    Xuefeng WU  Jie LI  Hisao KAMEDA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E81-D No:1
      Page(s):
    73-80

    In this paper, we present an analytic model to study the reliability of some important disk array organizations that have been proposed by others in the literature. These organizations are based on the combination of two options for the data layout, regular RAID-5 and block designs, and three alternatives for sparing, hot sparing, distributed sparing and parity sparing. Uncorrectable bit errors have big effects on reliability but are ignored in traditional reliability analysis of disk arrays. We consider both disk failures and uncorrectable bit errors in the model. The reliability of disk arrays is measured in terms of MTTDL (Mean Time To Data Loss). A unified formula of MTTDL has been derived for these disk array organizations. The MTTDLs of these disk array organizations are also compared using the analytic model. By numerical experiments, we show that the data losses caused by uncorrectable bit errors may dominate the data losses of disk array systems though only the data losses caused by disk failures are traditionally considered. The consideration of uncorrectable bit errors provides a more realistic look at the reliability of the disk array systems.

  • Neuron-MOSVT Cancellation Circuit and Its Application to a Low-Power and High-Swing Cascode Current Mirror

    Koichi TANNO  Jing SHEN  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Analog Signal Processing

      Vol:
    E81-A No:1
      Page(s):
    110-116

    In this paper, a threshold voltage (VT) cancellation circuit for neuron-MOS (νMOS) analog circuits is described. By connecting the output terminal of this circuit with one of the input terminals of the νMOS transistor, cancellation ofVT is realized. The circuit has advantages of ground-referenced output and is insensitive to the fluctuation of bias and supply voltages. Second-order effects, such as the channel length modulation effect, the mobility reduction effect and device mismatch of the proposed circuit are analyzed in detail. Low-power and high-swing νMOS cascode current mirror is presented as an application. Performance of the proposed circuits is confirmed by HSPICE simulation with MOSIS 2. 0 µ p-well double-poly and double-metal CMOS device parameters.

  • Gate Performance in Resonant Tunneling Single Electron Transistor

    Takashi HONDA  Seigo TARUCHA  David Guy AUSTING  

     
    PAPER

      Vol:
    E81-C No:1
      Page(s):
    2-7

    Gate performance for observing Coulomb oscillations and Coulomb diamonds are compared for two types of gated sub-µm double-barrier heterostructures. The first type of device contains modulation-doped barriers, whereas the second type of device contains a narrower band gap material for the well and no barriers with doped impurities. Both the Coulomb oscillations and Coulomb diamonds are modified irregularly as a function of gate voltage in the first type of device, while in the second type of device they are only systematically modified, reflecting atom-like properties of a quantum dot. This difference is explained in terms of the existence of impurities in the first type of device, which inhomogeneously deform the rotational symmetry of the lateral confining potential as the gate voltage is varied. The absence of impurities is the reason why we observe the atom-like properties only in the second type of device.

13901-13920hit(16314hit)