The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

15781-15800hit(16314hit)

  • Novel Narrowband Interference Rejection for an Asynchronous Spread Spectrum Wireless Modem Using a SAW Convolver

    Hiroyuki NAKASE  Kazuo TSUBOUCHI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    947-954

    An asynchronous spread spectrum (SS) wireless modem has been implemented using an efficient ZnO-SiO2-Si surface acoustic wave (SAW) convolver. The modem is based on a direct-sequence/frequency-shift-keying (DS/FSK) method for the modulation. The demodulation is carried out asynchronously utilizing the coherent correlation characteristics of the SAW convolver. In order to improve the narrowband interference rejection capability, we propose a new technique based on the reference signal control. A notched-reference-signal circuit and a self-convolution canceler are implemented in the SS modem for the reference signal control. It was found that the antijam capability for narrowband interference is at least -24dB of desired-to-undesired power ratio (D/U); the improvement of the antijam capability is 16dB up as compared with our previous SS modem.

  • Investigations of Gap Anisotropy of Bi2Sr2CaCu2Ox Single Crystal by Electron Tunneling

    Hironaru MURAKAMI  Ryozo AOKI  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1303-1309

    In order to investigate the characteristics of the superconducting gap structures of BSCCO oxide superconductor, tunneling spectrum measurements were carried out with several junctions on the bulk single crystal surfaces. Point contact tunneling studies by means of the M/I/S and S/(I)/S junctions have shown the reproducible gap values, 2Δ (//c-axis) of 402 meV, at the cleaved crystal surfaces, and the ratio of 2Δ(//)/kBTc5.50.3 indicates the strong coupling superconductor of this material. Somewhat larger gap values, 2Δmax(c-axis)701 meV, have been also observed at the lateral surface, and these various gap values observed on each surface of the same crystal indicate the characteristic of the large gap anisotropy, Δ()/Δ(//)1.8, of this material.

  • Performance of Asynchronous Band-Limited DS/SSMA Systems

    Takafumi SHIBATA  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    921-928

    This paper discusses the performance of asynchronous direct-sequence spread-spectrum multiple-access systems using binary or quaternary phase-shift keyed signals with the strict bandwidth-limitation by Nyquist filtering. The signal-to-noise plus interference ratio (SNIR) at the output from the correlation receiver is derived analytically taking the cross-correlation characteristics of spreading sequences into account, and also an approximated SNIR of a simple form is presented for the systems employing Gold sequences. Based on the analyzed result of SNIR, bit error rate performance and spectral efficiency are also estimated.

  • Capacity Analysis of a Cellular Direct Sequence Code Division Multiple Access System with Imperfect Power Control

    Ramjee PRASAD  Michel G. JANSEN  Adriaan KEGEL  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    894-905

    The capacity of a cellular direct sequence code division multiple access system is investigated in situations with and without power control for both the reverse link (from mobile to base station) and the forward link (from base station to mobile). The capacity is defined as the number of simultaneous users per cell with a prespecified performance. A theoretical analysis of the effect of imperfect power control on the reverse link capacity is presented using an analytical model. To investigate the reverse link capacity without any form of power control, a general spatial user distribution is developed which is very suitable for analytical study of any multiple access system with the near-far effect problem. The performance of the reverse link of a CDMA system is also evaluated considering the users located in surrounding cells. Finally, the forward link capacity is studied considering multiple cells. Two possible forward power control schemes, namely carrier-to-interference ratio driven and distance driven systems, are discussed.

  • Breast Tumor Classification by Neural Networks Fed with Sequential-Dependence Factors to the Input Layer

    Du-Yih TSAI  Hiroshi FUJITA  Katsuhei HORITA  Tokiko ENDO  Choichiro KIDO  Sadayuki SAKUMA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E76-D No:8
      Page(s):
    956-962

    We applied an artificial neural network approach identify possible tumors into benign and malignant ones in mammograms. A sequential-dependence technique, which calculates the degree of redundancy or patterning in a sequence, was employed to extract image features from mammographic images. The extracted vectors were then used as input to the network. Our preliminary results show that the neural network can correctly classify benign and malignant tumors at an average rate of 85%. This accuracy rate indicates that the neural network approach with the proposed feature-extraction technique has potential utility in the computer-aided diagnosis of breast cancer.

  • Effects of Air Gaps on Butt-Joints between Isotropic and Anisotropic Planar Waveguides

    Masashi HOTTA  Masahiro GESHIRO  Katsuaki KANOH  Haruo KANETAKE  

     
    PAPER-Opto-Electronics

      Vol:
    E76-C No:8
      Page(s):
    1345-1349

    Power transmission properties are investigated for a butt-joint which contains an air gap between an isotropic planar waveguide and an anisotropic one whose optical axis is lying in the plane defined by the propagation axis and the normal of the waveguide surface. New transmission coefficients are introduced for estimating the optical-power which is launched out into the gap from the incoming waveguide. Wave propagation through the gap is analyzed on the basis of the BPM concept. And the power transmitted across the interface between the gap and the outgoing waveguide is evaluated by means of the overlap integral of the field profiles. The effects of the air gap and the refractive index of filling liquid as well as axial displacement and angular misalignment are discussed on the basis of numerical results.

  • A Theory of Extended Pseudo-Biorthogonal Bases

    Hidemitsu OGAWA  Nasr-Eddine BERRACHED  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:8
      Page(s):
    890-897

    This paper introduces the concept of an extended pseudo-biorthogonal basis" (EPBOB), which is a generalization of the concepts of an orthonormal (OB), a biorthonormal (BOB), a pseudo-orthogonal (POB), and a pseudo-biorthogonal (PBOB) bases. Let HN be a subspace of a Hilbert space H. The concept of EPBOB says that we can always construct a set of 2M (MN) elements of H but not necessarily all in HN such that like BOB any element f in HN can be expressed by fMΣm=1(f,φ*m)φm. For a better understanding and a wide application of EPBOB, this paper provides their characterization and shows how they preserve the formalism of BOB. It also shows how to construct them.

  • A Signal Processing Method of Nonstationary Stochastic Response on a Power Scale for the Actual Sound Insulation Systems

    Mitsuo OHTA  Kiminobu NISHIMURA  

     
    PAPER-Speech and Acoustic Signal Processing

      Vol:
    E76-A No:8
      Page(s):
    1293-1299

    A new trial of statistical evaluation for an output response of power linear type acoustic systems with nonstationary random input is proposed. The purpose of this study is to predict the output probability distribution function on the basis of a standard type pre-experiment in a laboratoty. The statistical properties like nonstationarity, non-Gamma distribution property and various type linear and non-linear correlations of input signal are reflected in the form of differential operation with respect to distribution parameters. More concretely, the pre-experiment is carried out for a power linear acoustic system excited only by the Gamma distribution type sandard random input. Considering the non-negative random property for the output response of a power linear system, the well-known statistical Laguerre expansion series type probability expression is first employed as the framework of basic probability distribution expression on the output power fluctuation. Then, the objective output probability distribution for a non-stationary case can be easily derived only by successively employing newly introduced differential operators to this basic probability distribution of statistical Laguerre expansion series type. As an application to the actual noise environment, the proposed method is employed for an evaluation problem on the stochastic response probability distribution for an acoustic sound insulation system excited by a nonstationary input noise.

  • A Design Method for 3-Dimensional Band-Limiting FIR Filters Using McClellan Transfromation

    Toshiyuki YOSHIDA  Akinori NISHIHARA  Nobuo FUJII  

     
    PAPER-Multidimensional Signal Processing

      Vol:
    E76-A No:8
      Page(s):
    1283-1292

    In multidimensional signal sampling, the orthogonal sampling scheme is the simplest one and is employed in various applications, while a non-orthogonal sampling scheme is its alternative candidate. The latter sampling scheme is used mainly in application where the reduction of the sampling rate is important. In three-dimensional (3-D) signal processing, there are two typical sampling schemes which belong to the non-orthogonal samplings; one is face-centered cubic sampling (FCCS) and the other is body-centered cubic sampling (BCCS). This paper proposes a new design method for 3-D band-limiting FIR filters required for such non-orthogonal sampling schemes. The proposed method employs the McClellan transformation technique. Unlike the usual 3-D McClellan transformation, however, the proposed design method uses 2-D prototype filters and 2-D transformation filters to obtain 3-D FIR filters. First, 3-D general sampling theory is discussed and the two types of typical non-orthogonal sampling schemes, FCCS and BCCS, are explained. Then, the proposed design method of 3-D bandlimiting filters for these sampling schemes is explained and an effective implementation of the designed filters is discussed briefly. Finally, design examples are given and the proposed method is compared with other method to show the effectiveness of our methos.

  • Hybrid Neural Networks as a Tool for the Compressor Diagnosis

    Manabu KOTANI  Haruya MATSUMOTO  Toshihide KANAGAWA  

     
    PAPER-Speech Processing

      Vol:
    E76-D No:8
      Page(s):
    882-889

    An attempt to apply neural networks to the acoustic diagnosis for the reciprocating compressor is described. The proposed neural network, Hybrid Neural Network (HNN), is composed of two multi-layered neural networks, an Acoustic Feature Extraction Network (AFEN) and a Fault Discrimination Network (FDN). The AFEN has multi-layers and the number of units in the middle hidden layer is smaller than the others. The input patterns of the AFEN are the logarithmic power spectra. In the AFEN, the error back propagation method is applied as the learning algorithm and the target patterns for the output layer are the same as the input patterns. After the learning, the hidden layer acquires the compressed input information. The architecture of the AFEN appropriate for the acoustic diagnosis is examined. This includes the determination of the form of the activation function in the output layer, the number of hidden layers and the numbers of units in the hidden layers. The FDN is composed of three layers and the learning algorithm is the same as the AFEN. The appropriate number of units in the hidden layer of the FDN is examined. The input patterns of the FDN are fed from the output of the hidden layer in the learned AFEN. The task of the HNN is to discriminate the types of faults in the compressor's two elements, the valve plate and the valve spring. The performance of the FDN are compared between the different inputs; the output of the hidden layer in the AFEN, the conventional cepstral coefficients and the filterbank's outputs. Furthermore, the FDN itself is compared to the conventional pattern recognition technique based on the feature vector distance, the Euclid distance measure, where the input is taken from the AFEN. The obtained results show that the discrimination accuracy with the HNN is better than that with the other combination of the discrimination method and its input. The output criteria of network for practical use is also discussed. The discrimination accuracy with this criteria is 85.4% and there is no case which mistakes the fault condition for the normal condition. These results suggest that the proposed decision network is effective for the acoustic diagnosis.

  • Dependence of CMOS/SIMOX Inverter Delay Time on Gate Overlap Capacitance

    Takakuni DOUSEKI  Kazuo AOYAMA  Yasuhisa OMURA  

     
    PAPER-Electronic Circuits

      Vol:
    E76-C No:8
      Page(s):
    1325-1332

    This paper describes the dependence of the delay time of a CMOS/SIMOX inverter on the gate-overlap capacitance. An analytical delay-time equation for the CMOS/SIMOX inverter, which includes the gate-overlap capacitance, is derived. This equation shows that the feed-forward effect dominates the characteristics of inverters with a small fanout. The validity of the delay-time equation is confirmed by the comparison to experimental measurements of 0.4-µm CMOS/SIMOX devices. Moreover, a sensitivity analysis shows that it is very important to reduce the gate-drain overlap capacitance for fabricating high-speed scaled-down CMOS/SIMOX devices.

  • Magnetic Field Dependence of Critical Current Density in Superconducting Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O Films

    Yukio OSAKA  Hideki TAMURA  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1298-1302

    Nojima and Fujita have found a universal relation, irrespective of temperatures T, between the reduced field hH/Hir(T) and the reduced quantity of magnetization hysteresis mΔM (T, H)/ΔM (T, H0), where Hir is the irreversibility field and ΔM(T, H) is the hysteresis of magnetization for YBa2Cu3Ox and Bi2Sr2CaCu2Ox films. We could explain this universal relation based on a scaling theory in a three-dimensional superconducting vortex-glass phase. The exponent ν derived by this relation coincides with that obtained by nonlinear I-V characteristics for YBa2Cu3Ox films.

  • Performance Evaluation of Super High Definition Lmage Processing on a Parallel DSP System

    Tomoko SAWABE  Tatsuya FUJII  Tetsurou FUJII  Sadayasu ONO  

     
    PAPER-Image Processing

      Vol:
    E76-A No:8
      Page(s):
    1308-1315

    In this paper, we evaluate the sustained performance of the prototype SHD (Super High Definition) image processing system NOVI- HiPIPE, and discuss the requirements of a real-time SHD image processing system. NOVI- HiPIPE is a parallel DSP system with 128 PEs (Processing Elements), each containing one vector processor, and its peak performance is 15 GFLOPS. The measured performance of this system is at least 100 times higher than that of the Cray-2 (single CPU), but is still insufficient for real-time SHD image coding. When coding SHD moving images at 60 frames per second with the JPEG algorithm, the performance must be at least ten times faster than is now possible with NOVI- HiPIPE. To extract higher performance from a parallel processing system, the system architecture must be suitable for the implemented process. The advantages of NOVI- HiPIPE are its mesh network and high performance pipelined vector processor (VP), one of which is installed on each PE. When most basic SHD image coding techniques are implemented on NOVI- HiPIPE, intercommunication occurs only between directly connected PEs, and its cost is very low. Each VP can efficiently execute vector calculations. which occur frequently in image processing, and they increase the performance of NOVI- HiPIPE by a factor of from 20 to 100. In order to further improve the performance, the speed of memory access and bit operation must be increased. The next generation SHD image processing system must be built around the VP, an independent function block which controls memory access, and another block which executes bit operations. To support the input and output of SHD moving images and the inter-frame coding algorithms, the mesh network should be expanded into a 3D-cube.

  • On a Recent 4-Phase Sequence Design for CDMA

    A. Roger HAMMONS, Jr.  P. Vijay KUMAR  

     
    INVITED PAPER

      Vol:
    E76-B No:8
      Page(s):
    804-813

    Recently, a family of 4-phase sequences (alphabet {1,j,-1,-j}) was discovered having the same size 2r+1 and period 2r-1 as the family of binary (i.e., {+1, -1}) Gold sequences, but whose maximum nontrivial correlation is smaller by a factor of 2. In addition, the worst-case correlation magnitude remains the same for r odd or even, unlike in the case of Gold sequences. The family is asymptotically optimal with respect to the Welch lower bound on Cmax for complex-valued sequences and the sequences within the family are easily generated using shift registers. This paper aims to provide a more accessible description of these sequences.

  • Possibility of Phonon-Assistance on Electronic Transport and the Cooper Pairing in Oxide Superconductors

    Ryozo AOKI  Hironaru MURAKAMI  Tetsuro NAKAMURA  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1310-1318

    The Cooper pairing interaction in high Tc oxide superconductor is discussed in terms of an empirical expression; TcDexp[1/g], gcωo which was derived in our previous investigation. The dual character of this expression consisting of the phonon Debye temperature D and electronic excitation ωo in the mid-infrared region can be interpreted on the basis of the phonon-assisted mechanism on carrier conduction and the electronic excitation. A tunneling spectrum here presented shows certain evidence of the phonon contribution. The characteristics of the long range superconductive proximity phenomena recently reported are also may be interpreted by this mechanism.

  • Definition of Attributed Random Graph and Proposal of Its Applications

    Dong Su SEONG  Ho Sung KIM  Kyu Ho PARK  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:8
      Page(s):
    919-925

    In this paper, we define an attributed random graph, which can be considered as a generalization of conventional ones, to include multiple attributes as well as numeric attribute instead of a single nominal attribute in random vertices and edges. Then we derive the probability equations for an attributed graph to be an outcome graph of the attributed random graph, and the equations for the entropy calculation of the attributed random graph. Finally, we propose the application areas to computer vision and machine learning using these concepts.

  • An Architecture for High Speed Array Multiplier

    Farhad Fuad ISLAM  Keikichi TAMARU  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E76-A No:8
      Page(s):
    1326-1333

    High speed multiplication of two n-bit numbers plays an important role in many digital signal processing applications. Traditional array and Wallace multipliers are the most widely used multipliers implemented in VLSI. The area and time (=latency) of these two multipliers depend on operand bit-size, n. For a particular bit-size, they occupy fixed positions in some graph which has area and time along the x and y-axes respectively. However, many applications require a multiplier which has an 'intermediate' area-time characteristics with the above two traditional multipliers occupying two extreme ends of above mentioned area-time curve. In this paper, we propose such an intermediate multiplier which trades off area for time. It has higher speed (i.e., less latendy) but more area than a traditional array multiplier. Whereas when compared with a traditional Wallace multiplier, it has lower speed and area. The attractive point of our multiplier is that, it resembles an array multiplier in terms of regularity in placement and inter-connection of unit computation cells. And its interesting feature is that, in contrast to a traditional array multiplier, it computes by introducing multiple computation wave fronts among its computation cells. In this paper, we investigate on the area-time complexity of our proposed multiplier and discuss on its characteristics while comparing with some contemporary multiplers in terms of latency, area and wiring complexity.

  • An Automated Approach to Generating Leaf Cells for a Macro Cell Configuration

    Ritsu KUSABA  Hiroshi MIYASHITA  Takumi WATANABE  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E76-A No:8
      Page(s):
    1334-1342

    This paper describes a new automated approach to generating the patterns of CMOS leaf cells from transistor-level connectivity data. This method can generate CMOS leaf cells that are configurable to a macro cell satisfying user-specified constraints. The user-specified constraints include the aspect ratio and port positions of the macro cell. We propose a top-down method for converting the macro cell level constratints to leaf cell level ones. Using this method, a variety of customized macro cells can be designed in a short turn-around time. The method consists of four processes--diffusion sharing, initial placement, placement improvement and routing--which culminate in the automatic generation of symbolic representations. Using a compactor, those symbolic representations can be converted to physical patterns which are gathered into a macro cell by a macro generator. We define various objective functions to improve unit pair placement. We also introduce five ways to optimize leaf cell area: 1) multi-row division, 2) gate division 3) rotation, 4) power line and diffusion overlapping and 5) reconstruction of hierarchical structure. The proposed approach has been applied to various kinds of CMOS leaf cells. Experimental results show that the generated cells have almost the same areas as those generated by conventional bottom-up approaches in leaf and macro cell layouts. This approach offers a further advantage in that the various-sized macro cells required by layout disigners can also be generated.

  • Design of Josephson Ternary Delta-Gate (δ-Gate)

    Ali Massoud HAIDAR  Fu-Qiang LI  Mititada MORISUE  

     
    PAPER-Computer Hardware and Design

      Vol:
    E76-D No:8
      Page(s):
    853-862

    A new circuit design of Josephson ternary δ-gate composed of Josephson junction devices is presented. Mathematical theory for synthesizing, analyzing, and realizing any given function in ternary system using Josephson ternary δ-gate is introduced. The Josephson ternary δ-gate is realized using SQUID technique. Circuit simulation results using J-SPICE demonstrated the feasibility and the reliability operations of Josephson ternary δ-gate with very high performances for both speed and power consumption (max. propagation delay time44 ps and max. power consumption2.6µW). The Josephson ternary δ-gate forms a complete set (completeness) with the ternary constants (1, 0, 1). The number of SQUIDs that are needed to perform the operation of δ-gate is 6. Different design with less than 6 SQUIDs is not possible because it can not perform the operation of δ-gate. The advantages of Josephson ternary δ-gate compared with different Josephson logic circuits are as follows: The δ-gate has the property that a simple realization to any given ternary logic function as the building blocks can be achieved. The δ-gate has simple construction with small number of SQUIDs. The δ-gate can realize a large number of ternary functions with small number of input/output pins. The performances of δ-gate is very high, very low power consumption and ultra high speed switching operation.

  • On the Multiuser Detection Using a Neural Network in Code-Division Multiple-Access Communications

    Teruyuki MIYAJIMA  Takaaki HASEGAWA  Misao HANEISHI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    961-968

    In this paper we consider multiuser detection using a neural network in a synchronous code-division multiple-access channel. In a code-division multiple-access channel, a matched filter is widely used as a receiver. However, when the relative powers of the interfering signals are large, i.e. the near-far problem, the performances of the matched filter receiver degrade. Although the optimum receiver for multiuser detection is superior to the matched filter receiver in such situations, the optimum receiver is too complex to be implemented. A simple technique to implement the optimum multiuser detection is required. Recurrent neural networks which consist of a number of simple processing units can rapidly provide a collectively-computed solution. Moreover, the network can seek out a minimum in the energy function. On the other hand, the optimum multiuser detection in a synchronous channel is carried out by the maximization of a likelihood function. In this paper, it is shown that the energy function of the neural network is identical to the likelihood function of the optimum multiuser detection and the neural network can be used to implement the optimum multiuser detection. Performance comparisons among the optimum receiver, the matched filter one and the neural network one are carried out by computer simulations. It is shown that the neural network receiver has a capability to achieve near-optimum performance in several situations and local minimum problems are few serious.

15781-15800hit(16314hit)