The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

20061-20080hit(21534hit)

  • Modeling of Curved Conductor Surface in Analysis of Cavity Resonators by Spatial Network Method

    Yukio IIDA  Masanobu MORITA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E78-C No:2
      Page(s):
    193-200

    This paper describes the method of applying the integral form of Maxwell's equations to the transmission-line network used in the spatial network method for the modeling of curved conductor surfaces. The techniques of dealing with the transmission-line network near cylindrical conductor surface are explained in detail. To compare exact solutions with computed values, a cylindrical cavity resonator is analysed. The resonant frequencies and unloaded Q's for the computed three modes are obtained with the error of about 1%. Moreover, applying this treatment to the waveguide with magnetron anodeshape cross section, a cutoff-constant is computed successfully. It is found that the treatment proposed in this paper can be used as the method for modeling of curved conductor surface in the spatial network method. It is also considered that this treatment can be extend to TLM method.

  • Temperature Compensated Piezoresistor Fabricated by High Energy Ion Implantation

    Takahiro NISHIMOTO  Shuichi SHOJI  Kazuyuki MINAMI  Masayoshi ESASHI  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    152-156

    We developed piezoresistors with an intrinsic compensation of the offset temperature characteristics. High energy ion implantation was applied to fabricate this type of piezoresistor. The dopant profile of the buried piezoresistor resembles to that of the junction gate field effect transistor (JFET). The buried layer corresponds to a channel of JFET, and the substrate bias corresponds to the gate voltage. Owing to the independent temperature varying parameters, i.e., width of the depletion layer and carrier mobility in the channel, the drain current of the JFET has a temperature independent point at an appropriate gate source voltage. The effect was used in the new type of buried piezoresistor which has a driving point of zero temperature coefficient of resistance at an appropriate gate source voltage.

  • AlGaAs/GaAs Micromachining for Monolithic Integration of Micromechanical Structures with Laser Diodes

    Yuji UENISHI  Hidenao TANAKA  Hiroo UKITA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    139-145

    GaAs-based micromachining is a very attractive technique for integrating mechanical structures and active optical devices, such as laser diodes and photodiodes. For monolithically integrating mechanical parts onto laser diode wafers, the micromachining technique must be compatible with the laser diode fabrication process. Our micromachining technique features three major processes: epitaxitial growth (MOVPE) for both the structural and sacrificial layers, reactive dry-etching by chlorine for high-aspect, three-dimensional structures, and selective wet-etching by peroxide/ammonium hydroxide solution to release the moving parts. These processes are compatible with laser fabrication, so a cantilever beam structure can be fabricated at the same time as a laser diode structure. Furthermore, a single-crystal epitaxial layer has little residual stress, so precise microstructures can be obtained without significant deformation. We fabricated a microbeam resonator sensor composed of two laser diodes, a photodiode, and a micro-cantilever beam with an area of 400700 µm. The cantilever beam is 3 µm wide, 5 µm high, and either 110µm long for a 200-kHz resonant frequency or 50 µm long for a 1-MHz resonant frequency. The cantilever beam is excited by an intensity-modulated laser beam from an integrated excitation laser diode; the vibration signal is detected by a coupled cavity laser diode and a photodiode.

  • Methodology for Electromagnetic Interference Measurements

    Motohisa KANDA  

     
    INVITED PAPER

      Vol:
    E78-B No:2
      Page(s):
    88-108

    Although electromagnetic analysis tools can provide good numerical data about the effects of electromagnetic interference, measurements are the method of choice for obtaining quantitative, accurate data on electromagnetic noise problems. Furthermore, since electromagnetic interference measurements often provide the only data accepted by most regulatory agencies, the measurements and their accuracies have recently become a very important issue in order to regulate and harmonize various electromagnetic compatibility emission and immunity standards. The measurement techniques and instrumentations of most use for making accurate electromagnetic interference measurements are presented in this paper.

  • EMI Dipole Antenna Factors

    Akira SUGIURA  Takao MORIKAWA  Teruo TEJIMA  Hiroshi MASUZAWA  

     
    INVITED PAPER

      Vol:
    E78-B No:2
      Page(s):
    134-139

    Theoretical and experimental investigations of dipole antenna factors were carried out with special interest in their height patterns, since difference between them is a main cause of disagreement in EMI measurement results obtained with different antennas types. Antenna factors were expressed by matrix representation and their dependence on antenna dimensions and balun construction were numerically evaluated with the moment method. Those analyses revealed that antenna dimensions and balun characteristics have little effect on antenna factor height patterns. Slight influence was observed only at frequencies around 30MHz, when an antenna was placed less than 1.5m above a metal ground plane.

  • An Experimental Study on Subjective Evaluation of TV Picture Degradation by Electromagnetic Noise--Opinion Tests on Still and Motion Pictures--

    Motoshi TANAKA  Hiroshi INOUE  Tasuku TAKAGI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    168-172

    The effects of Gaussian electromagnetic noise and non-Gaussian one on TV picture degradation are studied by using a composite noise generator which can control noise parameters. Three kinds of still pictures and four kinds of motion pictures are tested, and the picture degradation is subjectively evaluated with five-grade impairment scale. The tendency of the picture degradation against the every picture is almost the same. But MOS (Mean Opinion Score) between still picture and motion picture degradation is different in some measure when the power of burst noise is small.

  • Computation of Potential Attenuation Process for Charged Human Body Using Numerical Inverse Laplace Transform

    Osamu FUJIWARA  Hironori ENDOH  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    188-192

    The potential attenuation process of charged human body (HB) is analyzed. A two-dimensional circuit model is presented for predicting the potential attenuation characteristics of the HB charged on the floor. The theoretical equation for the HB potential is derived in the closed form in the Laplacian transformation domain, and the numerical inverse Laplace transform is used to compute it. The half-life or relaxation time of the HB potential for decay is numerically examined with respect to the electrical parameters of shoes. The experiment is also conducted for verifying the validity of the computed result.

  • Scanning Force Microscope Using Piezoelectric Excitation and Detection

    Toshihiro ITOH  Takahiro OHASHI  Tadatomo SUGA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    146-151

    This paper reports on a new dynamic scanning force microscope (SFM), in which the piezoelectric microcantilever is utilized for the lever excitation and displacement sensing. Piezoelectric cantilevers can detect their deflection without external sensing elements and be vibrated with no oscillator outside. The cantilever integrated with the deflection detector and the oscillator changes the conventional construction of a dynamic SFM and expands its range of applicability. The microcantilever used consists of a ZnO layer sandwiched with Au electrodes deposited on a thin beam of thermally grown SiO2. The length, width and thickness of the lever are 125 µm, 50 µm and 3.5 µm, respectively. We have characterized this cantilever by measuring the charge spectrum and the frequency dependence of the admittance. From the charge spectrum the mechanical quality factor measured 300 in free vibration. Typical piezoelectric constant of the ZnO film was estimated approximately as 80% of single-crystal's value. The piezoelectric cantilever can be vibrated by applying the voltage with the frequency near the resonance to the piezoelectric layer. The excited amplitude per unit voltage at the resonance frequency was calculated as about 5 µm/V. The cantilever amplitude can be detected by measuring the current between electrodes, since the admittance depends on the quality factor. We have constructed a dynamic SFM without external oscillator and detector, and successfully obtained the surface images of a sol-gel derived PZT film in the cyclic contact operation mode. The longitudinal resolution of the SFM system was 0.3 nm at a 125 Hz bandwidth.

  • Approximation of Surface-SAR in a Realistic Head Model for Microwave Exposure Using External Magnetic Near-Field

    Osamu FUJIWARA  Michihiko NOMURA  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    140-144

    A method is described for approximately estimating the surface specific-absorption-rate (SAR) in an anatomically realistic model of the human head for microwave exposure using the external magnetic near-field. The finite-difference time-domain (FD-TD) technique is used to compute the electromagnetic fields in the head model for 750-MHz and 1.5-GHz far-field exposures with the 1991 ANSI specified safety level. The spatial pattern tracking between the one-gram averaged surface-SAR and external magnetic near-field is demonstrated on the horizontal cross sectional perimeter of the head model. The regression coefficients between them are also obtained on the fifty-five horizontal cross sectional perimeters, which could give an approximate value of the surface-SAR in an acutual head, if the external magnetic near-field would be measured. This is validated by the theoretical results in a semi-infinite homogeneous flat model for normal incidence microwave exposure.

  • Composite Noise Generator (CNG) as a Noise Simulator and Its Application to Noise Immunity Test of Digital Systems and TV Picture

    Tasuku TAKAGI  

     
    INVITED PAPER

      Vol:
    E78-B No:2
      Page(s):
    127-133

    A composite noise generator (CNG) is proposed for simulating the actual non-Gaussian noise and its applications are mentioned. Basing upon the actual measured result (APD) of induced noise from electric contact discharge arc, the APD is approximated by partial linearlization and shown that it can be simulated by a combination of plural Gaussian noise sources. Applying the CNG, quasi-peak (Q-P) detector is investigated and shown that the Q-P detector response is different for non-Gaussian noise when its time domain parameter is different even if its original APD is the same. For digital transmission error due to non-Gaussian noise, and for TV picture stained by the non-Gaussian noise, the CNG is applied to evaluate their performances and quality. The results obtained show that the CNG can be used as a standard non-Gaussian generator for several immunity tests for information equipments.

  • Measurement of Antenna Factor of Dipole Antennas on a Ground Plane by 3-Antenna Method

    Hitoshi IIDA  Shinobu ISHIGAMI  Ichiro YOKOSHIMA  Takashi IWASAKI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    260-267

    The antenna factor measurement of the dipole antennas for electromagnetic interference (EMI) measurements is studied theoretically and experimentally. The 3-antenna method is applied to near-field. Near-field transmission characteristics between the transmitting and receiving dipole antennas is obtained by using the electromotive force (EMF) method, where sinusoidal current distributions are assumed. It is shown that the antenna factors can be measured from transmission values between two antennas and near-field correction factors at any height of each antenna.

  • Finding All Solutions of Piecewise-Linear Resistive Circuits Containing Nonseparable Transistor Models

    Kiyotaka YAMAMURA  Osamu MATSUMOTO  

     
    LETTER-Numerical Analysis and Self-Validation

      Vol:
    E78-A No:2
      Page(s):
    264-267

    An efficient algorithm is given for finding all solutions of piecewise-linear resistive circuits containing nonseparable transistor models such as the Gummel-Poon model or the Shichman-Hodges model. The proposed algorithm is simple and can be easily programmed using recursive functions.

  • An Equivalent Transmission Line Model for Electromagnetic Penetration through Reinforced Concrete Walls

    Saverio CRISTINA  Antonio ORLANDI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    218-229

    In this paper we have considered both frequency-domain and time-domain shielding provided by reinforced concrete walls and floors in planar geometries, against electromagnetic fields due to electromagnetic pulses. The concrete composites have been modeled as isotropic, homogeneous lossy materials and the metal bars of the reinforcement have been modeled as a wire-mesh grid under the assumptions that the wire junctions are connected and that thin-wire approximation applies. The presence of imperfect wire junctions due to oxidation of overlapping or poor welding is taken into account by introducing an equivalent distributed junction impedance. We have used the formalism of the transmission matrix of network theory. Such a formalism is useful in dealing with shielding problems involving bodies with non-separable layers, such as the reinforcement and the concrete. The behavior of a reinforced concrete wall with respect to an incident electromagnetic field is a function both of the low-pass behavior of the concrete, and of the inductive effects of the metal frame impedance. The electric field inside a reinforced concrete structure shows an attenuation, a time delay when it reaches its maximum value, and an increase in its temporal width with respect to the electric field outside. The proposed model is validated by comparison with numerical and measured results.

  • An Engineering Design Approach of a Triple-TEM Cell Using Finite Element Method

    Xiao-Ding CAI  George I. COSTACHE  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    273-278

    Finite element analysis is carried out to provide an engineering design approach of a newly proposed Triple-TEM cell (TTEM cell). Important characteristics such as characteristic impedance, TEM mode field distribution, as well as TE and TM modes cutoff frequencies can be analyzed by using the software developed in this paper. Design guidelines have been provided for the TTEM cell. Reasonable geometric structure of the cross-sectional area of the TTEM cell would thereupon be resolved. Numerical results of the local higher order modes along the length of the cell are presented in this paper.

  • Measurements on Low Frequency Phase and Amplitude Fluctuations and Its Application to Reduce the Noise in Bipolar Transistor Circuits

    Keiji TAKAGI  

     
    LETTER

      Vol:
    E78-B No:2
      Page(s):
    279-280

    A system for measuring the low frequency amplitude and phase noises was set-up, with employing a phase sensitive detector and phase-shifter. It is noted that both noises were partly correlated. The phase noise was explained by the transit time fluctuation due to the fluctuating diffusion coefficient. The amplitude noise reduction was demonstrated by applying the inverted output of the phase noise to the amplitude noise.

  • Evaluation of Antenna Factor of Biconical Antennas for EMC Measurements

    Koichi GYODA  Yukio YAMANAKA  Takashi SHINOZUKA  Akira SUGIURA  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    268-272

    Broadband antennas such as biconical antennas and log-periodic dipole antennas are generally used in automatic EMC measurements. However, these broadband antennas have not been used for accurate measurement because accurate specifications for them are lacking. Therefore, more accurate analysis is urgently required by the CISPR (International Special Committee on Radio Interference), to establish the specifications for broadband antennas for EMC measurements. In this paper, the AF of biconical antennas is calculated by using Moment Methods. The frequency characteristics and antenna height dependency of AF are presented. AF is also measured and compared to the data obtained by the calculations. Good agreement between the calculations and measurements is achieved, indicating the usefulness of our computation method. In addition, the effect of antenna separation distance and transmitting antenna height on AF is investigated. The calculated AF deviation from the reference value is nearly 0dB except for certain antenna arrangements. In these antenna arrangements, the field becomes null at the receiving antenna and widely varies in magnitude and phase around the null points. Therefore, the antenna is immersed in a non-uniform field, while the AF is defined on the assumption of a uniform field. Consequently, the erroneous AF will be derived from measurements around these null points and it will be greatly different from that obtained at other antenna heights. Thus, it is better to avoid these conditions during actual measurements. The effect of the ground plane on AF is also evaluated. AF is shown to be seriously affected by the ground plane especially at frequencies around 90MHz. It should be noted that AF deviation has crests corresponding to the null field at 300MHz. The obtained data will be useful in establishing specifications of biconical antennas for EMC measurements.

  • Relationships among Nonlinearity Criteria of Boolean Functions

    Shouichi HIROSE  Katsuo IKEDA  

     
    PAPER-Information Security and Cryptography

      Vol:
    E78-A No:2
      Page(s):
    235-243

    For symmetric cryptosystems, their transformations should have nonlinear elements to be secure against various attacks. Several nonlinearity criteria have been defined and their properties have been made clear. This paper focuses on, among these criteria, the propagation criterion (PC) and the strict avalanche criterion (SAC), and makes a further investigation of them. It discusses the sets of Boolean functions satisflying the PC of higher degrees, the sets of those satisfying the SAC of higher orders and their relationships. We give a necessary and sufficient condition for an n-input Boolean function to satisfy the PC with respect to a set of all but one or two elements in {0,1}n{(0,...,0)}. From this condition, it follows that, for every even n 2, an n-input Boolean function satisfies the PC of degree n 1 if and only if it satisfies the PC of degree n. We also show a method that constructs, for any odd n 3, n-input Boolean functions that satisfy the PC with respect to a set of all but one elements in {0,1}n{(0,...,0)}. This method is a generalized version of a previous one. Concerned with the SAC of higher orders, it is shown that the previously proved upper bound of the nonlinear order of Boolean functions satisfying the criterion is tight. The relationships are discussed between the set of n-input Boolean functions satisfying the PC and the sets of those satisfying the SAC.

  • A Drive of Input and Output Impedance Effects of Functional Blocks into a Frequency Shift of Active Circuits

    Kazuyuki WADA  Nobuo FUJII  Shigetaka TAKAGI  

     
    PAPER

      Vol:
    E78-A No:2
      Page(s):
    177-184

    A method of driving the effects caused by finite input impedance and nonzero output impedance of functional building blocks into a frequency shift of transfer characteristics is proposed. The method is quite simple and systematic. The input and output impedances can have arbitrary values under a simple condition which meets the monolithic integration of circuits. The effects of non ideal input and output impedances are converted to a change of integrator gain leading to a simple frequency shift of circuits. The frequency shift can easily be adjusted by conventional methods. A typical example shows a remarkable effect of the method.

  • The Optimum Approximation of Multi-Dimensional Signals Based on the Quantized Sample Values of Transformed Signals

    Takuro KIDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E78-A No:2
      Page(s):
    208-234

    A systematic theory of the optimum multi-path interpolation using parallel filter banks is presented with respect to a family of n-dimensional signals which are not necessarily band-limited. In the first phase, we present the optimum spacelimited interpolation functions minimizing simultaneously the wide variety of measures of error defined independently in each separate range in the space variable domain, such as 8 8 pixels, for example. Although the quantization of the decimated sample values in each path is contained in this discussion, the resultant interpolation functions possess the optimum property stated above. In the second phase, we will consider the optimum approximation such that no restriction is imposed on the supports of interpolation functions. The Fourier transforms of the interpolation functions can be obtained as the solutions of the finite number of linear equations. For a family of signals not being band-limited, in general, this approximation satisfies beautiful orthogonal relation and minimizes various measures of error simultaneously including many types of measures of error defined in the frequency domain. These results can be extended to the discrete signal processing. In this case, when the rate of the decimation is in the state of critical-sampling or over-sampling and the analysis filters satisfy the condition of paraunitary, the results in the first phase are classified as follows: (1) If the supports of the interpolation functions are narrow and the approximation error necessarily exists, the presented interpolation functions realize the optimum approximation in the first phase. (2) If these supports become wide, in due course, the presented approximation satisfies perfect reconstruction at the given discrete points and realizes the optimum approximation given in the first phase at the intermediate points of the initial discrete points. (3) If the supports become wider, the statements in (2) are still valid but the measure of the approximation error in the first phase at the intermediate points becomes smaller. (4) Finally, those interpolation functions approach to the results in the second phase without destroying the property of perfect reconstruction at the initial discrete points.

  • Synchronization Phenomena in Oscillators Coupled by One Resistor

    Seiichiro MORO  Yoshifumi NISHIO  Sinsaku MORI  

     
    PAPER-Nonlinear Circuits and Systems

      Vol:
    E78-A No:2
      Page(s):
    244-253

    There have been many investigations of mutual synchronization of oscillators. In this article, N oscillators with the same natural frequencies mutually coupled by one resistor are analyzed. In this system, various synchronization phenomena can be observed because the system tends to minimize the current through the coupling resistor. When the nonlinear characteristics are third-power, we can observe N-phase oscillation, and this system can take (N 1)! phase states. When the nonlinear characteristics are fifth-power, we can observe (N 1),(N 2)3 and 2-phase oscillations as well as N-phase oscillations and we can get much more phase states from this system than that of the system with third-power nonlinear characteristics. Because of their coupling structure and huge number of steady states of the system, our system would be a structural element of cellular neural networks. In this study, it is confirmed that our systems can stably take huge number of phase states by theoretical analysis, computer calculations and circuit experiments.

20061-20080hit(21534hit)