The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

20041-20060hit(21534hit)

  • Connectivity Problems on Area Graphs for Locally Striking Disasters--Direct NA-Connection--

    Hiro ITO  

     
    PAPER-Graphs and Networks

      Vol:
    E78-A No:3
      Page(s):
    363-370

    Connectivity (of node-to-node) is generally used to examine the robustness of graphs. When telecommunication network switches are integrated into logical switching areas, we should examine node-to-area connectivity rather than node-to-node connectivity. In a previous paper, we proposed node-to-area (NA) connectivity using area (subset of nodes) graph. In this paper, we consider a further constraint: "there is a path that does not include other nodes in the source node area." We call this property, directly NA-connected. Application of this constraint makes telecommunications networks robust against locally striking disasters. The problem of finding the maximum number of edge deletions that still preserves the direct NA-connection is shown to be NP-hard. It was shown in our previous paper that an NA-connected spanning tree is easily found; this paper shows that the problem of finding a directly NA-connected spanning tree is also NP-hard. We propose an O(|E||X|) approximation algorithm that finds a directly NA-connected spanning subgraph with an edge nummber not exceeding 2|V|3 for any NA-connected area graph that satisfies a described simple condition. (|V|,|E|,and |X| are the numbers of nodes, edges, and areas, respectively.)

  • The Performance of the New Convolutional Coded ARQ Scheme for Moderately Time-Varying Channels

    Hiroyuki FUJIWARA  Hirosuke YAMAMOTO  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E78-A No:3
      Page(s):
    403-411

    The performance of the hybrid-ARQ scheme with a convolutional code, in which the retransmission criterion is based on an estimated decoding error rate, is evaluated for moderately time-varying channels. It is shown by computer simulations that the simple average diversity combining scheme can almost attain the same performance as the optimally weighted diversity combining scheme. For the whole and partial retransmission schemes with the average diversity combining, the theoretical bounds of throughput and bit error rate are derived, and it is shown that their bounds are tight and the treated schemes can attain a given error rate with good throughput for moderately time-varying channels. Furthermore, the throughput is shown to be improved by the partial retransmission scheme compared with the whole retransmission scheme.

  • A Universal Structure for SDH Multiplex Line Terminals with a Unique CMOS LSI for SOH Processing

    Yoshihiko UEMATSU  Shinji MATSUOKA  Kohji HOHKAWA  Yoshiaki YAMABAYASHI  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E78-B No:3
      Page(s):
    362-372

    This paper proposes a universal structure for STM-N(N=1, 2, 3, ) multiplex line terminals that only utilizes N chips CMOS LSIs for Section OverHead (SOH) processing. The uniquely configured LSIs are applicable to any STM-N line terminal equipment. Reasonable frame alignment performance attributes, such as the maximum average reframe time, false in-frame time, out-of-frame detection time, and misframe time, are calculated for the configuration. A prototype SOH processing LSI built on 0.8m BiCMOS technology successfully realizes the functions needed for multiplex section termination. The STM-64 frame is also demonstrated using the proposed circuit configuration and prototype LSIs.

  • Enhancement of Band-Edge Gain in Radial Line Slot Antennas Using the Power Divider--A Wide-Band Radial Line Slot Antenna--

    Tetsuya YAMAMOTO  Masaharu TAKAHASHI  Makoto ANDO  Naohisa GOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E78-B No:3
      Page(s):
    398-406

    A Radial Line Slot Antenna (RLSA) is a planar antenna for DBS reception. It is a kind of slotted waveguide arrays. The conductor loss is so small that high efficiency is expected irrespective of the aperture diameter. On the other hand, since a RLSA utilizes the traveling waves, the frequency bandwidth is limited by the long line effect, particularly for a larger antenna. A new Wide-Band RLSA (WB-RLSA) is proposed which halves the waveguide length and widens the frequency bandwidth. This paper presents the design and experimental results of a model antenna. A gain of 33.7dBi is measured at the edge of 800MHz bandwidth and its high potential is demonstrated.

  • Boron Penetration and Hot-Carrier Effects in Surface-Channel PMOSFETs with p+ Poly-Si Gates

    Tohru MOGAMI  Lars E. G. JOHANSSON  Isami SAKAI  Masao FUKUMA  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    255-260

    Surface-channel PMOSFETs are suitable for use in the quarter micron CMOS devices. For surface-channel PMOSFETs with p+ poly-Si gates, boron penetration and hot-carrier effects were investigated. When the annealing temperature is higher and the gate oxide is thinner, a larger threshold voltage shift was observed for p+ poly-Si PMOSFETs, because of boron penetration. Furthermore, PMOSFETs with BF2-implanted gates cause larger boron penetration than those with Boron-implanted gates. Howerer, the PMOSFET lifetime, determined by hot-carrier reliability, does not depend on the degree of boron penetration. Instead, it depends on doping species, that is, BF2 and Boron. PMOSFETs with BF2-implanted gates have about 100 times longer lifetime than those with Boron-implanted gates. The main reason for the longer lifetime of BF2-doped PMOSFETs is the incorporation of fluorine in the gate oxide of the PMOSFET with the BF2-implanted gate, resulting in the smaller electron trapping in the gate oxide. The maximun allowed supply voltage,based on the hot-carrier reliability, is higher than4V for sub-half micron PMOSFETs with BF2- or Boron-implanted poly Si gates.

  • A New Wide Applicable Mobility Model for Device Simulation Taking Physics-Based Carrier Screening Effects into Account

    Koichi FUKUDA  Kenji NISHI  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    281-287

    Carrier mobility is one of the most fundamental parameters in semiconductor device modeling, and many mobility models have already been reported. Especially for numerical device simulators, many local models which are functions of impurity concentration and electric field at each local point have been studied. However, concerning their dependence on impurity concentration including carrier screening effects, these models suffer parameter fitting procedure because of their empirical formulation. In such models, carrier screening effects to the Coulomb potential of ionized impurity are not sufficiently considered, although we can find some models which treat the effects as only a small perturbation term. According to the simple theory of Brooks and Herring, carrier screening effects should be included in strong combination with impurity concentration terms and cannot be treated as additional perturbations. Although Brooks-Herring theory is successful, it also suffers from overestimation of the mobility values at concentration higher than 1018 cm-3 which causes some other complicated phenomena. Therefore there have been no models which directly use Brooks-Herring formula. But it is true that such screening effects should be considered when carrier concentration differs from impurity concentration as in the inversion layers of MOSFETs. We have developed a new mobility model for its dependence of impurity and carrier concentration based on the theory of Brooks-Herring. Brooks-Herring theory is based on simple physics of screened Coulomb potential, and therefore makes the model to include effects of free carriers without an artifitial formula. For high doping regime, an additional term has been introduced in Brooks-Herring formula to correct the high doping effects. Except for this term, the model should be most appropriate for including the carrier screening effects upto the concentration of 1018 cm-3. The new model is implimented in a device simulator, and is applied to the evaluation of MOSFETs especially for the universal curves of inversion layer mobility. Moreoever, the applications to the depletion-type MOSFET confirm the validity of the screening effects. The purpose of this paper is to propose the new mobility model and to show its validity through these applications to MOSFETs.

  • Plasma-Induced Transconductance Degradation of nMOSFET with Thin Gate Oxide

    Koji ERIGUCHI  Masatoshi ARAI  Yukiharu URAOKA  Masafumi KUBOTA  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    261-266

    Degradation of metal-oxide-semiconductor field-effect transistors (MOSFETs) reliability such as the relative transconductance reduction by plasma exposure is evaluated. The linear region peak transconductance (gm) decreases with antenna ratio (exposed antenna area/gate area) due to the plasma-induced Si-SiO2 interface state generation. The Si-SiO2 interface-related gm reduction which is defined as (gm0gm)/gm, where gm0 is the initial value of gm, decreases as the gate oxide thickness decreases. It is also found that the decreasing amount of gm depends on the conduction current from the plasma. The correlation between the (gm0gm)/gm and the plasma-induced reduction of charge-to-breakdown of the gate oxide with a constant current stress (ΔQBD) is observed, and the result shows that the gm reduction of nMOSFET during the plasma process is severe to the plasma-induced damage compared with the gate oxide breakdown.

  • New Communication Systems via Chaotic Synchronizations and Modulations

    Makoto ITOH  Hiroyuki MURAKAMI  

     
    PAPER-Nonlinear Problems

      Vol:
    E78-A No:3
      Page(s):
    285-290

    In this paper, we demonstrate how Yamakawa's chaotic chips and Chua's circuits can be used to implement a secure communication system. Furthermore, their performance for the secure communication is discussed.

  • A New Robust Block Adaptive Filter for Colored Signal Input

    Shigenori KINJO  Hiroshi OCHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E78-A No:3
      Page(s):
    437-439

    In this report, we propose a robust block adaptive digital filter (BADF) which can improve the accuracy of the estimated weights by averaging the adaptive weight vectors. We show that the improvement of the estimated weights is independent of the input signal correlation.

  • A New Concept of Differential-Difference Amplifier and Its Application Examples for Mixed Analog/Digital VLSI Systems

    Zdzislaw CZARNUL  Tetsuya IIDA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E78-A No:3
      Page(s):
    314-321

    This paper discusses a CMOS differential-difference amplifier circuit suitable for low voltage operation. A new multiple weighted input transconductor circuit structure is suggested to be use in DDA implementation. The proposed DDA can be employed in several analog/digital systems to improve their parameters. Selected examples of the proposed transconductor/DDA applications are also discussed.

  • Dynamic Method for Evaluating the Upgrading of Access Networks

    Yukihiro FUJIMOTO  Hisao OIKAWA  

     
    PAPER-Communication Networks and Service

      Vol:
    E78-B No:3
      Page(s):
    295-302

    Telecommunication services are expected to be upgraded from POTS to B-ISDN services in the future. This means that the conventional metallic access networks should be upgraded to optical fiber access networks because of providing high bit-rate services. Therefore, it is very important to clarify upgrade strategies in access networks. This paper proposes a dynamic evaluation method that can support decision-making on the upgrade strategy from the viewpoint of economy. This method can determine the most promising future access network and upgrade timing. Moreover, viability of various upgrade strategies can be evaluated by this method.

  • New Carrier Frequency Assignments for Minimizing Intermodulation Products in Two-Level SCPC Systems

    Sang M. LEE  Sung Chan KO  Hyung Jin CHOI  

     
    PAPER-Satellite Communication

      Vol:
    E78-B No:3
      Page(s):
    387-397

    In this paper, we propose an efficient method (called DIRIC algorithm) to allocate carrier frequencies so as to minimize intermodulation products in two-level SCPC systems in which Hub station and many Remote stations communicate each other through satellite transponder. We also present a very efficient method to evaluate intermodulation products with substantially reduced CPU time in two-level SCPC systems. We compare and analyze the performance of several frequency allocation methods to extend DELINS-INSDEL algorithm (which is proposed by Okinaka) to two-level SCPC systems. When the proposed algorithm is applied to systems with modulated carrier, it is verified that this algorithm has the same efficiency as the unmodulated carrier. It is also shown heuristically that certain initial assignment algorithms perform better than random assignment.

  • Traffic Design and Administration for Distributed Adaptive Channel Assignment Method in Microcellular Systems

    Arata KOIKE  Hideaki YOSHINO  

     
    PAPER-Radio Communication

      Vol:
    E78-B No:3
      Page(s):
    379-386

    In improving channel utilization in microcellular systems, adaptive channel allocation using distributed control has been reported to be effective. We describe an analytical approximation algorithm for channel dimensioning of distributed adaptive channel allocation. We compare our analytical results with simulation results and show the characteristics of permissible load as a function of the number of base station channels based on our method. Finally we illustrate traffic design and administration based on our algorithm.

  • A Hybrid Hierarchical Global Router for Multi-Layer VLSI's

    Masayuki HAYASHI  Shuji TSUKIYAMA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E78-A No:3
      Page(s):
    337-344

    In this paper, we propose a hybrid hierarchical global router for multi-layer VLSI's, which executes routing and layering simultaneously. This novel approach, a hybrid hierarchical global router, is a combination of a topdown and a bottomup hierarchical routers, and may be one of interesting routing techniques. We also show experimental results, which demonstrate the superiority of the hybrid hierarchical approach. This approach may have many possibilities to be used in a various fields.

  • Fabrication and Delay Time Analysis of Deep Submicron CMOS Devices

    Yasuo NARA  Manabu DEURA  Ken-ichi GOTO  Tatsuya YAMAZAKI  Tetsu FUKANO  Toshihiro SUGII  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    293-298

    This paper describes the fabrication of 0.1 µm gate length CMOS devices and analysis of delay time by circuit simulation. In order to reduce the gate resistance, TiN capped cobalt salicide technology is applied to the fabrication of 0.1 µm CMOS devices. Gate sheet resistance with a 0.1 µm gate is as low as 5 Ω/sq. Propagation delay times of 0.1 µm and 0.15 µm CMOS inverter are 21 ps and 36 ps. Simulated propagation delay time agreed fairly well with experimental results. For gate length over 0.15 µm, intrinsic delay in CMOS devices is the main dalay factor. This suggests that increasing current drivability is the most efficient way to improve propagation delay time. At 0.1 µm, each parasitic component and intrinsic delay have similar contributions on device speed due to the short channel effect. To improve delay time, we used rapid thermal annealing or a high dose LDD structure. With this structure, drain current increases by more than 1.3 times and simulation predicted a delay time of 28 ps is possible with 0.15 µm CMOS inverters.

  • Chaotic Behavior in Simple Looped MOS Inverters

    Cong-Kha PHAM  Mamoru TANAKA  Katsufusa SHONO  

     
    PAPER-Nonlinear Problems

      Vol:
    E78-A No:3
      Page(s):
    291-299

    In this paper, bifurcation and chaotic behavior which occur in simple looped MOS inverters with high speed operation are described. The most important point in this work is to change a nonlinear transfer characteristic of a MOS inverter to the nonlinearity generating a chaos. Three types of circuits which include four, three and one MOS inverters, respectively, are proposed. A switched capacitor (SC) circuit to operate sampling holding is added in the loop in each of the circuits. The bifurcation and chaotic behavior have been found along with a variation of an external input, and/or a sampling clock frequency. The bifurcation and chaotic behavior of the proposed simple looped MOS inverters are verified by employing SPICE circuit simulator as well as the experiments. For the first type of four looped CMOS inverters, Lyapunov exponent λ which has the positive regions for the chaotic behavior can be calculated by use of the fitting nonlinear function synthesized from two sigmoid functions. For the second type of three looped CMOS inverters and the third type of one looped MOS inverter, the nonlinear charge/discharge characteristics of the hold capacitor in the SC circuit is utilized efficiently for forming the nonlinearity generating the bifurcation and chaotic behavior. Their bifurcation can be generated by the sampling clock frequency parameter which is controlled easily.

  • An Ultra Low Noise 50-GHz-Band Amplifier MMIC Using an AIGaAs/InGaAs Pseudomorphic HEMT

    Takuo KASHIWA  Takayuki KATOH  Naohito YOSHIDA  Hiroyuki MINAMI  Toshiaki KITANO  Makio KOMARU  Noriyuki TANINO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:3
      Page(s):
    318-321

    An ultra low noise 50-GHz-Band amplifier (LNA) MMIC has been developed using an AlGaAs/InGaAs pseudomorphic HEMT. A noise figure of 1.8 dB with an associated gain of 8.1 dB is achieved at 50 GHz. The noise figure is less than 2.0 dB from 50 GHz to 52.5 GHz. This is the state-of-the-art noise figure for low noise amplifiers around 50 GHz. The success of this LNA development came from the excellent HEMT and MMIC technologies and the accurate modeling of active and passive elements. Good agreement between measured and simulated data over the band from 40 GHz to 60 GHz is obtained.

  • Finding All Solutions of Piecewise-Linear Resistive Circuits Containing Nonseparable Transistor Models

    Kiyotaka YAMAMURA  Osamu MATSUMOTO  

     
    LETTER-Numerical Analysis and Self-Validation

      Vol:
    E78-A No:2
      Page(s):
    264-267

    An efficient algorithm is given for finding all solutions of piecewise-linear resistive circuits containing nonseparable transistor models such as the Gummel-Poon model or the Shichman-Hodges model. The proposed algorithm is simple and can be easily programmed using recursive functions.

  • A Voltage Controlled Astable Multivibrator with Miller-Integrator

    Hirofumi SASAKI  Kuniaki FUJIMOTO  Mitsutoshi YAHARA  

     
    LETTER

      Vol:
    E78-A No:2
      Page(s):
    196-198

    In this letter, we propose a simple voltage controlled oscillator (VCO) with circuitry combining a Miller integrator and an RS flip-flop circuit. With the VCO, the control voltage can be varied over a broad range, and the oscillation frequency varies in proportion to the control voltage. The maximum voltage is up to 1000 times the minimum, and the calculated design values and measured values agree well. This VCO can be applied to FM modulators, FSK modulators, and other systems.

  • Geometric Shape Recognition with Fuzzy Filtered Input to a Backpropagation Neural Network

    Figen ULGEN  Andrew C. FLAVELL  Norio AKAMATSU  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E78-D No:2
      Page(s):
    174-183

    Recognition of hand drawn shapes is beneficial in drawing packages and automated sketch entry in hand-held computers. Although it is possible to store and retrieve drawings through the use of electronic ink, further manipulation of these drawings require recognition to be performed. In this paper, we propose a new approach to invariant geometric shape recognition which utilizes a fuzzy function to reduce noise and a neural network for classification. Instead of recognizing segments of a drawing and then performing syntactical analysis to match with a predefined shape, which is weak in terms of generalization and dealing with noise, we examine the shape as a whole. The main concept of the recognition method is derived from the fact that internal angles are very important in the perception of the shape. Our application's aim is to recognize and correctively redraw hand drawn ellipses, circles, rectangles, squares and triangles. The neural network learns the relationships between the internal angles of a shape and its classification, therefore only a few training samples which represent the class of the shape is sufficient. The results are very successful, such that the neural network correctly classified shapes which were not included in the training set.

20041-20060hit(21534hit)