The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

20081-20100hit(21534hit)

  • Measurements of Fast Transient Fields in the Vicinity of Short Gap Discharges

    Shinobu ISHIGAMI  Ryoichi GOKITA  Yoshifumi NISHIYAMA  Ichiro YOKOSHIMA  Takashi IWASAKI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    199-206

    The wave forms of electric and magnetic fields radiated by short gap discharges are measured to analyze electrostatic discharge (ESD) events in the near-field zone with the monopole antennas, the loop antenna and the 5.5GHz bandwidth waveform digitizer. The antenna outputs are corrected by the measured characteristics of the antennas. The relations between the measured electric field and the discharge currents are discussed.

  • Improving Generalization Performance by Information Minimization

    Ryotaro KAMIMURA  Toshiyuki TAKAGI  Shohachiro NAKANISHI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E78-D No:2
      Page(s):
    163-173

    In the present paper, we attempt to show that the information about input patterns must be as small as possible for improving the generalization performance under the condition that the network can produce targets with appropriate accuracy. The information is defined with respect to the hidden unit activity and we suppose that the hidden unit has a crucial role to store the information content about input patterns. The information is defined by the difference between uncertainty of the hidden unit at the initial stage of the learning and the uncertainty of the hidden unit at the final stage of the learning. After having formulated an update rule for the information minimization, we applied the method to a problem of language acquisition: the inference of the past tense forms of regular and irregular verbs. Experimental results confirmed that by our method, the information was significantly decreased and the generalization performance was greatly improved.

  • Mechanizing Explicit Inductive Equational Reasoning by DTRC

    Su FENG  Toshiki SAKABE  Yasuyoshi INAGAKI  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E78-D No:2
      Page(s):
    113-121

    Dynamic Term Rewriting Calculus (DTRC) is a new computation model aiming at formal description and verification of algorithms treating Term Rewriting Systems (TRSs). In this paper, we show that we can use DTRC to mechanize explicit induction for proving an inductive theorem, that is, we can translate the statements of base and induction steps for proving by induction into a DTRC term. The translation reduces the proof of the statements into the evaluation of the corresponding DTRC term.

  • Computation of Potential Attenuation Process for Charged Human Body Using Numerical Inverse Laplace Transform

    Osamu FUJIWARA  Hironori ENDOH  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    188-192

    The potential attenuation process of charged human body (HB) is analyzed. A two-dimensional circuit model is presented for predicting the potential attenuation characteristics of the HB charged on the floor. The theoretical equation for the HB potential is derived in the closed form in the Laplacian transformation domain, and the numerical inverse Laplace transform is used to compute it. The half-life or relaxation time of the HB potential for decay is numerically examined with respect to the electrical parameters of shoes. The experiment is also conducted for verifying the validity of the computed result.

  • Defect-Tolerant WSI File Memory System Using Address Permutation for Spare Allocation

    Eiji FUJIWARA  Masaharu TANAKA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E78-D No:2
      Page(s):
    130-137

    This paper proposes a large capacity high-speed file memory system implemented with wafer scale RAM which adopts a novel defect-tolerant technique. Based on set-associative mapping, the defective memory blocks on the wafer are repaired by switching with the spare memory blocks. In order to repair the clustered defective blocks, these are permuted logically with other blocks by adding some constant value to the input block addresses. The defective blocks remaining even after applying the above two methods are repaired by using error control codes which correct soft errors induced by alpha particles in an on-line operation as well as hard errors induced by the remaining defective blocks. By using the proposed technique, this paper demonstrates a large capacity high-speed WSI file memory system implemented with high fabrication yield and low redundancy rate.

  • Prediction of Peak Frequencies on Electromagnetic Emission from a Signal Line on a Printed Circuit Board

    Takuya MIYASHITA  Osami WADA  Ryuji KOGA  Hiroya SANO  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    181-187

    Concerned is a spectral profile of electromagnetic (EM) emission from a signal line on a high-speed digital circuit. The authors have proposed and examined an a priori method to predict the peak frequencies on spectral profile of EM emission from printed circuit boards (PCBs). Profile of an EM spectrum is determined by the resonance of digital circuits. It is the purpose of this paper to investigate the parameters that determine the spectral profile of EM emission from a signal line on a PCS. In this paper, measurements and calculations of EM spectra were carried out for different load capacitances. EM emissions were measured with a small loop antenna at a 50mm from the surface of the PCB. Measured EM spectra had two peaks. Calculated EM spectra, which was based on transient current given by the analog simulator SPICE, had two peaks too. Results of calculations of EM spectra for different internal capacitances of an IC tell that lower peak frequency is determined by the resonance frequency of the resonant loop which is composed of an IC package and a decoupling capacitor. Comparison with measured EM spectra and calculated EM spectra for different load resistances tell that sharpness of the other peak depends on Q factor of a resonant loop which includes a signal line. Therefore the peak frequencies of EM emission spectrum can be predicted as two resonance frequencies of two resonant circuits.

  • Finding All Solutions of Piecewise-Linear Resistive Circuits Containing Nonseparable Transistor Models

    Kiyotaka YAMAMURA  Osamu MATSUMOTO  

     
    LETTER-Numerical Analysis and Self-Validation

      Vol:
    E78-A No:2
      Page(s):
    264-267

    An efficient algorithm is given for finding all solutions of piecewise-linear resistive circuits containing nonseparable transistor models such as the Gummel-Poon model or the Shichman-Hodges model. The proposed algorithm is simple and can be easily programmed using recursive functions.

  • Equivalence between Some Dynamical Systems for Optimization

    Kiichi URAHAMA  

     
    LETTER-Optimization Techniques

      Vol:
    E78-A No:2
      Page(s):
    268-271

    It is shown by the derivation of solution methods for an elementary optimization problem that the stochastic relaxation in image analysis, the Potts neural networks for combinatorial optimization and interior point methods for nonlinear programming have common formulation of their dynamics. This unification of these algorithms leads us to possibility for real time solution of these problems with common analog electronic circuits.

  • Scanning Force Microscope Using Piezoelectric Excitation and Detection

    Toshihiro ITOH  Takahiro OHASHI  Tadatomo SUGA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    146-151

    This paper reports on a new dynamic scanning force microscope (SFM), in which the piezoelectric microcantilever is utilized for the lever excitation and displacement sensing. Piezoelectric cantilevers can detect their deflection without external sensing elements and be vibrated with no oscillator outside. The cantilever integrated with the deflection detector and the oscillator changes the conventional construction of a dynamic SFM and expands its range of applicability. The microcantilever used consists of a ZnO layer sandwiched with Au electrodes deposited on a thin beam of thermally grown SiO2. The length, width and thickness of the lever are 125 µm, 50 µm and 3.5 µm, respectively. We have characterized this cantilever by measuring the charge spectrum and the frequency dependence of the admittance. From the charge spectrum the mechanical quality factor measured 300 in free vibration. Typical piezoelectric constant of the ZnO film was estimated approximately as 80% of single-crystal's value. The piezoelectric cantilever can be vibrated by applying the voltage with the frequency near the resonance to the piezoelectric layer. The excited amplitude per unit voltage at the resonance frequency was calculated as about 5 µm/V. The cantilever amplitude can be detected by measuring the current between electrodes, since the admittance depends on the quality factor. We have constructed a dynamic SFM without external oscillator and detector, and successfully obtained the surface images of a sol-gel derived PZT film in the cyclic contact operation mode. The longitudinal resolution of the SFM system was 0.3 nm at a 125 Hz bandwidth.

  • Approximation of Surface-SAR in a Realistic Head Model for Microwave Exposure Using External Magnetic Near-Field

    Osamu FUJIWARA  Michihiko NOMURA  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    140-144

    A method is described for approximately estimating the surface specific-absorption-rate (SAR) in an anatomically realistic model of the human head for microwave exposure using the external magnetic near-field. The finite-difference time-domain (FD-TD) technique is used to compute the electromagnetic fields in the head model for 750-MHz and 1.5-GHz far-field exposures with the 1991 ANSI specified safety level. The spatial pattern tracking between the one-gram averaged surface-SAR and external magnetic near-field is demonstrated on the horizontal cross sectional perimeter of the head model. The regression coefficients between them are also obtained on the fifty-five horizontal cross sectional perimeters, which could give an approximate value of the surface-SAR in an acutual head, if the external magnetic near-field would be measured. This is validated by the theoretical results in a semi-infinite homogeneous flat model for normal incidence microwave exposure.

  • Measurement of Antenna Factor of Dipole Antennas on a Ground Plane by 3-Antenna Method

    Hitoshi IIDA  Shinobu ISHIGAMI  Ichiro YOKOSHIMA  Takashi IWASAKI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    260-267

    The antenna factor measurement of the dipole antennas for electromagnetic interference (EMI) measurements is studied theoretically and experimentally. The 3-antenna method is applied to near-field. Near-field transmission characteristics between the transmitting and receiving dipole antennas is obtained by using the electromotive force (EMF) method, where sinusoidal current distributions are assumed. It is shown that the antenna factors can be measured from transmission values between two antennas and near-field correction factors at any height of each antenna.

  • An Equivalent Transmission Line Model for Electromagnetic Penetration through Reinforced Concrete Walls

    Saverio CRISTINA  Antonio ORLANDI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    218-229

    In this paper we have considered both frequency-domain and time-domain shielding provided by reinforced concrete walls and floors in planar geometries, against electromagnetic fields due to electromagnetic pulses. The concrete composites have been modeled as isotropic, homogeneous lossy materials and the metal bars of the reinforcement have been modeled as a wire-mesh grid under the assumptions that the wire junctions are connected and that thin-wire approximation applies. The presence of imperfect wire junctions due to oxidation of overlapping or poor welding is taken into account by introducing an equivalent distributed junction impedance. We have used the formalism of the transmission matrix of network theory. Such a formalism is useful in dealing with shielding problems involving bodies with non-separable layers, such as the reinforcement and the concrete. The behavior of a reinforced concrete wall with respect to an incident electromagnetic field is a function both of the low-pass behavior of the concrete, and of the inductive effects of the metal frame impedance. The electric field inside a reinforced concrete structure shows an attenuation, a time delay when it reaches its maximum value, and an increase in its temporal width with respect to the electric field outside. The proposed model is validated by comparison with numerical and measured results.

  • A High Slew Rate Operational Amplifier for an LCD Driver IC

    Tetsuro ITAKURA  

     
    LETTER

      Vol:
    E78-A No:2
      Page(s):
    191-195

    This paper describes an efficient slew rate enhancement technique especially suitable for an operational amplifier used in an LCD driver IC. This technique employs an input-dependent biasing without directly monitoring an input; instead, monitoring an output of the first stage of the amplifier. This enhancement technique is easily applied to a conventional two-stage operational amplifier and requires only 8 additional transistors to increase slew rates for both rising and falling edges. The bias currents of the first and the second stages are simultaneously controlled by this biasing. Experimental operational amplifiers with and without this enhancement have been fabricated to demonstrate the improvement of slew rate. Slew rates of 12.5V/µsec for the rising edge and 50V/µsec for the falling edge with a 100 pF load capacitance have been achieved by this technique, compared with slew rates of 0.3V/µsec for the rising edge and 5V/µsec for the falling edge in the conventional amplifier.

  • An Effect on Chip Interleaving and Hard Limiter against Burst Noise in Direct Sequence Spread Spectrum Communication Systems

    Shin'ichi TACHIKAWA  

     
    LETTER-Spread Spectrum Technology

      Vol:
    E78-A No:2
      Page(s):
    272-276

    This paper presents improvement of data error rate against burst noise by using both chip interleaving and hard limiter in direct sequence spread spectrum (DS/SS) communication systems. Chip interleaving, which is a unique method of DS/SS systems, is effective when burst noise power is small. However, when the burst noise power is large, date error rate is degraded. While, though hard limiter suppresses burst noise power, it gives little effectiveness when the burst noise length is long. Using chip interleaving and hard limiter together, as they work complementary, stable and considerable improvement of data error rate is achieved.

  • A Time Varying Step Size Normalized LMS Algorithm for Adaptive Echo Canceler Structures

    Mariko NAKANO MIYATAKE  Hector PEREZ MEANA  Luis NIÑO de RIVERA O  Fausto CASCO SANCHEZ  Juan Carlos SANCHEZ GARCIA  

     
    LETTER-Adaptive Signal Processing

      Vol:
    E78-A No:2
      Page(s):
    254-258

    This letter proposes a time varying step size normalized LMS (TVS-NLMS) algorithm for adaptive echo canceler structures. Proposed algorithm reduces distortion during double talk, without increasing the computational cost nor decreasing the convergence rate of the normalized LMS algorithm significantly. Simulation results using white noise and actual speech signals confirm the desirable features of the proposed scheme.

  • A Constructive Linearization Method for Transistor Circuits

    Tsutomu SUGAWARA  

     
    PAPER

      Vol:
    E78-A No:2
      Page(s):
    185-190

    This paper proposes a constructive linearization method for transistor circuits based on a polynomial representation of nonlinear transfer functions. The nonlinear transfer functions for various configurations have been shown in a polynomial form. Then the results have been applied to several bipolar transistor circuits to exemplify the proposed designing method.

  • Evaluation of Antenna Factor of Biconical Antennas for EMC Measurements

    Koichi GYODA  Yukio YAMANAKA  Takashi SHINOZUKA  Akira SUGIURA  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    268-272

    Broadband antennas such as biconical antennas and log-periodic dipole antennas are generally used in automatic EMC measurements. However, these broadband antennas have not been used for accurate measurement because accurate specifications for them are lacking. Therefore, more accurate analysis is urgently required by the CISPR (International Special Committee on Radio Interference), to establish the specifications for broadband antennas for EMC measurements. In this paper, the AF of biconical antennas is calculated by using Moment Methods. The frequency characteristics and antenna height dependency of AF are presented. AF is also measured and compared to the data obtained by the calculations. Good agreement between the calculations and measurements is achieved, indicating the usefulness of our computation method. In addition, the effect of antenna separation distance and transmitting antenna height on AF is investigated. The calculated AF deviation from the reference value is nearly 0dB except for certain antenna arrangements. In these antenna arrangements, the field becomes null at the receiving antenna and widely varies in magnitude and phase around the null points. Therefore, the antenna is immersed in a non-uniform field, while the AF is defined on the assumption of a uniform field. Consequently, the erroneous AF will be derived from measurements around these null points and it will be greatly different from that obtained at other antenna heights. Thus, it is better to avoid these conditions during actual measurements. The effect of the ground plane on AF is also evaluated. AF is shown to be seriously affected by the ground plane especially at frequencies around 90MHz. It should be noted that AF deviation has crests corresponding to the null field at 300MHz. The obtained data will be useful in establishing specifications of biconical antennas for EMC measurements.

  • Measurements on Low Frequency Phase and Amplitude Fluctuations and Its Application to Reduce the Noise in Bipolar Transistor Circuits

    Keiji TAKAGI  

     
    LETTER

      Vol:
    E78-B No:2
      Page(s):
    279-280

    A system for measuring the low frequency amplitude and phase noises was set-up, with employing a phase sensitive detector and phase-shifter. It is noted that both noises were partly correlated. The phase noise was explained by the transit time fluctuation due to the fluctuating diffusion coefficient. The amplitude noise reduction was demonstrated by applying the inverted output of the phase noise to the amplitude noise.

  • The Effect of Internal Parasitic Capacitances in Series-Connected MOS Structure

    Sang Heon LEE  Song Bai PARK  Kyu Ho PARK  

     
    LETTER-VLSI Design Technology

      Vol:
    E78-A No:1
      Page(s):
    142-145

    A simple method is presented to calculate the parasitic capacitance effect in the propagation delay of series-connected MOS (SCM) structures. This method divides SCM circuits into two parts and accurately calculates the contribution of each part to the difference from the delay without parasitic capacitances.

  • 10-Gb/s Repeaterless Transmission Using Standard Single-Mode Fiber with Pre-Chirping and Dispersion Compensation Techniques

    George ISHIKAWA  Motoyoshi SEKIYA  Hiroshi ONAKA  Terumi CHIKAMA  Hiroshi NISHIMOTO  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    43-49

    This paper proposes that a combination of pre-chirping and dispersion compensation is effective in suppressing the waveform distortion due to the self-phase modulation and the group-velocity dispersion in 10 Gb/s repeaterless transmission using 1.3-µm zero-dispersion single-mode fibers (SMF) operating at a wavelength of 1.55µm. The following results were obtained through simulation. 1) Setting the α-parameter of a LiNbO3 optical modulator negative (α1.0) gives a large tolerance of the launched power Pin. 2) For 90-km SMF transmission, the maximum Pin is obtained when the dispersion compensation ratio β is from 50% to 70%. 3) For the allowable β as a function of the transmission distance when a dispersion compensator is located in the receiver (post-compensation scheme), the lower limit of β is determined by the constant residual dispersion value, which agrees well with the dispersion tolerance without dispersion compensation. Our 90-km SMF transmission experiments using a LiNbO3 optical modulator and a dispersion compensating fiber (DCF) confirmed the simulation results regarding the optimum value of β and the large tolerance of the fiber launched power. Based on the above investigations, we achieved a 10-Gb/s repeaterless 140-km SMF transmission with α1.0 and post-compensation.

20081-20100hit(21534hit)