The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

19841-19860hit(21534hit)

  • Radiation Properties of Ring-Shaped Microstrip Antenna Array

    Motohiko KOBAYASHI  Eko Tjipto RAHARDJO  Shin-ichiro TSUDA  Misao HANEISHI  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    995-1001

    In this paper, mutual coupling S21 between RMSA (ring-shaped microstrip antenna) elements was estimated by the EMF method based on the cavity model. Then, the validity of the proposed method was tested by experiments. The experiments confirmed satisfactory agreement between the computed and experimental data for S21 in both E- and H-plane arrangements. In addition, a circularly polarized planar array composed of R-MSA elements was designed on the basis of the data of S21. The experimental results of such a planar array demonstrated high performance in radiation pattern as well as axial ratio property. Furthermore, the active reflection coefficient Γ in the R-MSA array was also investigated in both equilateral and square arrangements. The computed results of active reflection coefficient in the array demonstrated high performance in both arrangements.

  • Microstrip Active Filters Using GaAs FET Negative Resistance Circuits for Loss Compensation

    Ulun KARACAOGLU  Ian D. ROBERTSON  Marco GUGLIELMI  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    957-964

    Design techniques are presented for high performance microstrip bandpass filters using GaAs FETs for loss compensation. The filters are based on conventional planar filter topologies with the addition of GaAs FET negative resistance circuits to amplify the signal within the resonators via a reflection-mode of amplification. Three practical filters have been demonstrated using these negative resistance techniques: (1) A filter employing an active loop configuration, (2) a dual-mode microstrip ring resonator filter, and (3) an end-coupled half-wavelength resonator filter. The investigation of this negative resistance method of loss compensation has led to the development of an exciting new type of miniaturised filter which employs MIC microstrip resonators with MMIC negative resistance chips bonded into the filter for loss compensation. This approach has the advantage of combining the proven capabilities of established MIC microstrip filter topologies with the excellent reproducibility of the MMIC loss compensation circuits.

  • A Novel Millimeter-Wave IC on Si Substrate Using Flip-Chip Bonding Technology

    Hiroyuki SAKAI  Yorito OTA  Kaoru INOUE  Takayuki YOSHIDA  Kazuaki TAKAHASHI  Suguru FUJITA  Morikazu SAGAWA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    971-978

    A new mm-wave IC, constructed by flip-chip bonded heterojunction transistors and microstrip lines formed on Si substrate, has been proposed and demonstrated by using MBB (micro bump boding) technology. Millimeter-wave characteristics of the MBB region has been estimated by electro-magnetic field analysis. Good agreements between calculated and measured characteristics of this new IC (named MFIC: millimeter-wave flip-chip IC) have been obtained up to 60 GHz band. Several MFIC amplifiers with their designed performances have been successfully fabricated.

  • Quantum-Device-Oriented Multiple-Valued Logic System Based on a Super Pass Gate

    Xiaowei DENG  Takahiro HANYU  Michitaka KAMEYAMA  

     
    PAPER-Computer Hardware and Design

      Vol:
    E78-D No:8
      Page(s):
    951-958

    The investigation of device functions required from the systems point of view will be important for the development of the next generation of VLSI devices and systems. In this paper, a super pass transistor (SPT) model is presented as a quantum device candidate for future VLSI systems based on multiple-valued logic. A possible quantum device structure for the SPT model is also described, which employs the concepts of a lateral-resonant-tunneling quantum-dot transistor and a heterostructure field-effect transistor. Since it has the powerful capability of detecting multiple signal levels, the SPT will be useful for the implementation of highly compact multiple-valued VLSI systems. To exploit the functionality of the SPT, a super pass gate (SP-gate) corresponding to a single SPT is proposed as a multiple-valued universal logic module. The mathematical properties of the SP-gate are discussed. A design method for a multiple-valued SP-gate network is presented. An application of SP-gates to a multiple-valued image processing system is also demonstrated. The SP-gate network for the multiple-valued image processing system is evaluated in comparison with the corresponding NMOS implementation in terms of the number of transistors, interconnections and cascaded transistor stages. The size of a generalized series-parallel SP-gate network is also evaluated in comparison with a functionally equivalent multiple-valued series-parallel MOS pass transistor network. The results show that highly compact multiple-valued VLSI systems can be achieved if the SPT-model can be realized by an actual quantum device.

  • Miniaturized Stepped Impedance Resonators with a Double Coaxial Structure and Their Application to Bandpass Filters

    Morikazu SAGAWA  Michiaki MATSUO  Mitsuo MAKIMOTO  Kazuhiro EGUCHI  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1051-1057

    This paper describes newly developed miniaturized stepped impedance resonators with a double coaxial structure (DC-SIR's) and their application to bandpass filters. The new DC-SIR's using dielectric material are devised for more compact and lower frequency bandpass filters. Fundamental characteristics such as resonance properties and unloaded-Q make it clear that DC-SIR's have attractive features that miniaturization can be achieved without Q-factor degradation. Trial 400 MHz bandpass filters incorporating DC-SIR's are also made. Experimental results of bandpass filters proved that DC-SIR's are applicable to lower frequency band radio equipment and able to contribute to the expansion of applicable frequency ranges of dielectric coaxial resonators.

  • A Polynomial-Time Algorithm for Checking the Inclusion for Real-Time Deterministic Restricted One-Counter Automata Which Accept by Final State

    Ken HIGUCHI  Mitsuo WAKATSUKI  Etsuji TOMITA  

     
    PAPER-Automata, Languages and Theory of Computing

      Vol:
    E78-D No:8
      Page(s):
    939-950

    A deterministic pushdown automaton (dpda) having just one stack symbol is called a deterministic restricted one-counter automaton (droca). A deterministic one-counter automaton (doca) is a dpda having only one stack symbol, with the exception of a bottom-of-stack marker. The class of languages accepted by droca's which accept by final state is a proper subclass of the class of languages accepted by doca's. Valiant has proved the decidability of the equivalence problem for doca's and the undecidability of the inclusion problem for doca's. Hence the decidability of the equivalence problem for droca's is obvious. In this paper, we evaluate the upper bound of the length of the shortest input string (witness) that disproves the inclusion for a pair of real-time droca's which accept by final state, and present a new direct branching algorithm for checking the inclusion for a pair of languages accepted by these droca's. Then we show that the worst-case time complexity of our algorithm is polynomial in the size of these droca's.

  • An Electro-Optic BFN for Array Antenna Beam Forming

    Yoshiaki KAMIYA  Yasushi MURAKAMI  Wataru CHUJO  Masayuki FUJISE  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1090-1094

    This paper proposes a new type of optically controlled BFN (beam forming network), an electro-optic BFN using an optical waveguide structure. In this BFN, antenna beam forming is performed using conventional optical variable phase shifters and conventional optical variable directional couplers. An electro-optic BFN can easily utilize monolithic integration capability that will be advantageous to microwave stabilization. In order to discuss practical applicability, microwave characteristics and beam forming characteristics were examined using an experimental BFN fabricated on a LiNbO3 substrate. Resulting from electro-optic lightwave control, linear phase shifting and variable amplitude distribution were measured at various microwave frequencies. Without any other control except for optical offset frequency locking and applying constant voltages, typical short term fluctuation in L-band microwave was measured to be within 3 degreesp-p in phase and 2.5 dBp-p in amplitude, respectively. For the first time, an electro-optic BFN was successful in performing beam forming in an L-band array antenna as well as coaxial cables. It was also verified that radiation pattern measured in 60 degree beam steering using the experimental BFN was comparable to that calculated using conventional microwave BFNs. The experimental results show the feasibility of utilizing an electro-optic BFN in future advanced microwave/millimeter-wave array antenna systems.

  • Spatial and Temporal Equalization Based on an Adaptive Tapped-Delay-Line Array Antenna

    Naoto ISHII  Ryuji KOHNO  

     
    PAPER

      Vol:
    E78-B No:8
      Page(s):
    1162-1169

    This paper describes a spatial and temporal multipath channel model which is useful in array antenna environments for mobile radio communications. From this model, a no distortion criterion, that is an extension of the Nyquist criterion, is derived for equalization in both spatial and temporal domains. An adaptive tapped-delay-line (TDL) array antenna is used as a tool for equalization in both spatial and temporal domains. Several criterion for such spatial and temporal equalization such as ZF (Zero Forcing) and MSE (Mean Square Error), are available to update the weights and tap coefficients. In this paper, we discuss the optimum weights based on the ZF criterion in both spatial and temporal domains. Since the ZF criterion satisfies the Nyquist criterion in case of noise free, this paper applies the ZF criterion for the spatial and temporal equalization as a simple case. The Z transform is applied to represent the spatial and temporal model of the multipath channel and to derive the optimal weights of the TDL array antenna. However, in some cases the optimal antenna weights cannot be decided uniquely. Therefore, the effect on the equalization errors due to a finite number of antenna elements and tap coefficients can be shown numerically by computer simulations.

  • Discrete Time Cellular Neural Networks with Two Types of Neuron Circuits for Image Coding and Their VLSI Implementations

    Cong-Kha PHAM  Munemitsu IKEGAMI  Mamoru TANAKA  

     
    PAPER

      Vol:
    E78-A No:8
      Page(s):
    978-988

    This paper described discrete time Cellular Neural Networks (DT-CNN) with two types of neuron circuits for image coding from an analog format to a digital format and their VLSI implementations. The image coding methods proposed in this paper have been investigated for a purpose of transmission of a coded image and restoration again without a large loss of an original image information. Each neuron circuti of a network receives one pixel of an input image, and processes it with binary outputs data fed from neighboring neuron circuits. Parallel dynamics quantization methods have been adopted for image coding methods. They are performed in networks to decide an output binary value of each neuron circuit according to output values of neighboring neuron circuits. Delayed binary outputs of neuron circuits in a neighborhood are directly connected to inputs of a current active neuron circuit. Next state of a network is computed form a current state at some neuron circuits in any time interval. Models of two types of neuron circuits and networks are presented and simulated to confirm an ability of proposed methods. Also, physical layout designs of coding chips have been done to show their possibility of VLSI realizations.

  • A Declarative Synchronization Mechanism for Parallel Object-Oriented Computation

    Takanobu BABA  Norihito SAITOH  Takahiro FURUTA  Hiroshi TAGUCHI  Tsutomu YOSHINAGA  

     
    PAPER-Computer Systems

      Vol:
    E78-D No:8
      Page(s):
    969-981

    We have designed and implemented a simple yet powerful declarative synchronization mechanism for a paralle object-oriented computation model. The mechanism allows the user to control multiple message reception, specify the order of message reception, lock an invocation, and specify relations as invocation constraints. It has been included in a parallel object-oriented language, called A-NETL. The compiler and operating system have been developed on a total architecture, A-NET (Actors NETwork). The experimental results show that (i) the mechanism allows the user to model asynchronous events naturally, without losing the integrity of described programs; (ii) the replacement of the mechanism with the user's code requires tedious descriptions, but gains little performance enhancement, and certainly loses program readability and integrity; (iii) the mechanism allows the user to shift synchronous programs to asynchronous ones, with a scalable reduction of execution times: an average 20.6% for 6 to 17 objects and 46.1% for 65 objects. These prove the effectiveness of the proposed synchronization mechanism.

  • Unsupervised Speaker Adaptation Using All-Phoneme Ergodic Hidden Markov Network

    Yasunage MIYAZAWA  Jun-ichi TAKAMI  Shigeki SAGAYAMA  Shoichi MATSUNAGA  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E78-D No:8
      Page(s):
    1044-1050

    This paper proposes an unsupervised speaker adaptation method using an all-phoneme ergodic Hidden Markov Network" that combines allophonic (context-dependent phone) acoustic models with stochastic language constraints. Hidden Markov Network (HMnet) for allophone modeling and allophonic bigram probabilities derived from a large text database are combined to yield a single large ergodic HMM which represents arbitrary speech signals in a particular language so that the model parameters can be re-estimated using text-unknown speech samples with the Baum-Welch algorithm. When combined with the Vector Field Smoothing (VFS) technique, unsupervised speaker adaptation can be effectively performed. This method experimentally gave better performances compared with our previous unsupervised adaptation method which used conventional phonetic HMMs and phoneme bigram probabilities especially when the amount of training data was small.

  • Bottleneck Identification Methodology for Performance-Oriented Design of Shared-Bus Multiprocessors

    Chiung-San LEE  Tai-Ming PARNG  

     
    PAPER-Computer Systems

      Vol:
    E78-D No:8
      Page(s):
    982-991

    A bottleneck identification methodology is proposed for the performance-oriented design of shared-bus multiprocessors, which are composed of several major subsystems (e.g. off-chip cache, bus, memory, I/O). A subsystem with the longest access time per instruction is the one that limits processor performance and creates a bottleneck to the system. The methodology also facilitates further refined analysis on the access time of the bottleneck subsystem to help identify the causes of the bottleneck. Example performance model of a particular shared-bus multiprocessor architecture with separate address bus and data bus is developed to illustrate the key idea of the bottleneck identification methodology. Accessing conflicts in subsystems and DMA transfers are also considered in the model.

  • A Stable Least Square Algorithm Based on Predictors and Its Application to Fast Newton Transversal Filters

    Youhua WANG  Kenji NAKAYAMA  

     
    LETTER

      Vol:
    E78-A No:8
      Page(s):
    999-1003

    In this letter, we introduce a predictor based least square (PLS) algorithm. By involving both order- and time-update recursions, the PLS algorithm is found to have a more stable performance compared with the stable version (Version II) of the RLS algorithm shown in Ref.[1]. Nevertheless, the computational requirement is about 50% of that of the RLS algorithm. As an application, the PLS algorithm can be applied to the fast Newton transversal filters (FNTF). The FNTF algorithms suffer from the numerical instability problem if the quantities used for extending the gain vector are computed by using the fast RLS algorithms. By combing the PLS and the FNTF algorithms, we obtain a much more stable performance and a simple algorithm formulation.

  • Determination of Shape and Fall Velocity of Raindrops by lmage Processing

    Ken-ichiro MURAMOTO  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:8
      Page(s):
    1051-1057

    A computer-based system for the automatic determination of the physical parameters of rainfall was developed. The measuring device consists of a light source and two TV cameras. Images of raindrops that fell through the slit were observed on a frosted glass plate as shadow images which were photographed simultaneously by two TV cameras with different shutter speeds and analyzed. The data indicated that the shape of raindrops were spheroid in case of small diameter but were slightly deformed into an oblate spheroid in case of larger diameter, and the fall velocity tends to increase with increasing size of raindrops. Rainfall rates calculated from the shape and velocity were compared with those measured directly and found to agree.

  • On-line Recognition of Cursive Hangul by DP Matching with Structural Information

    Eun Joo RHEE  Tae Kyun KIM  Masayuki NAKAJIMA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:8
      Page(s):
    1065-1073

    This paper presents a system for recognition of on-line cursive Hangul (Korean characters) by means of DP matching of structural information. The penalty function has the following special features. In order to prevent short spurious strokes from causing large penalties, an input stroke is weighted by its length relative to other input strokes. In order to make use of pen-up and pen-down information, a penalty is incurred when 2 strokes of differing type (i.e. pen-up with pen-down) are matched. Finally, to reduce the chance of obtaining a suboptimal solution which can result from using the greedy algorithm in DP matching, we look-ahead an extra match. In a computer simulation we obtained a recognition rate of 92% for partially cursive characters and 89% for fully cursive characters. Furthermore, for both cases combined the correct character appears 98% of the time in the top 10 candidates. Thus we confirmed that the proposed algorithm is effective in recognizing cursive Hangul.

  • A Minimum Error Approach to Spotting-Based Pattern Recognition

    Takashi KOMORI  Shigeru KATAGIRI  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E78-D No:8
      Page(s):
    1032-1043

    Keyword spotting is a fundamental approach to recognizing/understanding naturally and spontaneously spoken language. To spot acoustic events such as keywords, an overall spotting system, comprising acoustic models and decision thresholds, primarily needs to be optimized to minimize all spoting errors. However, in most conventional spotting systems, the acoustic models and the thresholds are separately and heuristically designed: There has not necessarily been a theoretical basis that has allowed one to design an overall system consistently. This paper introduces a novel approach to spotting, by proposing a new design method called Minimum SPotting Error learning (MSPE). MSPE is conceptually based on a recent discriminative learning theory, i.e., the Minimum Classification Error learning/Generalized Probabilistic Descent method (MCE/GPD); it features a rigorous framework for minimizing spotting error objectives. MSPE can be used in a wide range of pattern spotting applications, such as spoken phonemes, written characters as well as spoken words. Experimental results for a Japanese consonant spotting task clearly demonstrate the promising future of the proposed approach.

  • Error Correction/Detection Decoding Scheme of Binary Hamming Codes

    Chaehag YI  Jae Hong LEE  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E78-A No:8
      Page(s):
    1046-1048

    An error correction/detection decoding scheme of binary Hamming codes is proposed. Error correction is performed by algebraic decoding and then error detection is performed by simple likelihood ratio testing. The proposed scheme reduces the probability of undetected decoding error in comparison with conventional error correction scheme and increases throughjput in comparison with conventional error detection scheme.

  • High Fmax AlGaAs/GaAs HBTs with Pt/Ti/Pt/Au Base Contacts for DC to 40 GHz Broadband Amplifiers

    Tohru SUGIYAMA  Yasuhiko KURIYAMA  Norio IIZUKA  Kunio TSUDA  Kouhei MORIZUKA  Masao OBARA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    944-948

    A low contact resistivity of 4.410-7 Ωcm2 for AlGaAs/GaAs HBTs was realized using Pt/Ti/Pt/Au base metal and a 81019 cm-3 highly-doped base. A high fmax of 170 GHz was achieved by reducing a base resistance. The formation of oxide-free interface between an AlGaAs graded base and Pt-based metal was demonstrated with Auger electron spectroscopy. The optimization of the growth condition conquered the rapid current-induced degradation in the highly Be-doped HBTs. An extremely wide bandwidth of 40 GHz was attained by a Darlington feeback amplifier fabricated using these high-fmax HBTs. These properties indicate that the application of AlGaAs/GaAs HBTs can be expected to extend to future ultrahigh-speed optical transmission systems.

  • 3-D Motion Analysis of a Planar Surface by Renormalization

    Kenichi KANATANI  Sachio TAKEDA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:8
      Page(s):
    1074-1079

    This paper presents a theoretically best algorithm within the framework of our image noise model for reconstructing 3-D from two views when all the feature points are on a planar surface. Pointing out that statistical bias is introduced if the least-squares scheme is used in the presence of image noise, we propose a scheme called renormalization, which automatically removes statistical bias. We also present an optimal correction scheme for canceling the effect of image noise in individual feature points. Finally, we show numerical simulation and confirm the effectiveness of our method.

  • Analysis of Momentum Term in Back-Propagation

    Masafumi HAGIWARA  Akira SATO  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E78-D No:8
      Page(s):
    1080-1086

    The back-propagation algorithm has been applied to many fields, and has shown large capability of neural networks. Many people use the back-propagation algorithm together with a momentum term to accelerate its convergence. However, in spite of the importance for theoretical studies, theoretical background of a momentum term has been unknown so far. First, this paper explains clearly the theoretical origin of a momentum term in the back-propagation algorithm for both a batch mode learning and a pattern-by-pattern learning. We will prove that the back-propagation algorithm having a momentum term can be derived through the following two assumptions: 1) The cost function is Enαn-µEµ, where Eµ is the summation of squared error at the output layer at the µth learning time and a is the momentum coefficient. 2) The latest weights are assumed in calculating the cost function En. Next, we derive a simple relationship between momentum, learning rate, and learning speed and then further discussion is made with computer simulation.

19841-19860hit(21534hit)