The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

5821-5840hit(21534hit)

  • Electromagnetic Modeling of Metamaterials Open Access

    Toru UNO  

     
    INVITED PAPER

      Vol:
    E96-B No:10
      Page(s):
    2340-2347

    Metamaterials are generally defined as a class of artificial effective media which macroscopically exhibit extraordinary electromagnetic properties that may not be found in nature, and are composed of periodically structured dielectric, or magnetic, or metallic materials. This paper reviews recently developed electromagnetic modeling methods of metamatericals and their inherent basic ideas, with a focus on full wave numerical techniques. Methods described in this paper are the Method of Moments (MoM) and the Finite Difference Time Domain (FDTD) Method for scattering problems excited by an incident plane wave and a single nonperiodic source, and the Finite Element Method (FEM), the Finite Difference Frequency Domain (FDFD) method and the FDTD method for band diagram calculations.

  • Small Loop Antenna and Rectenna for RF Energy Harvesting in FM Bands

    Akira NOGUCHI  Hiroyuki ARAI  

     
    BRIEF PAPER

      Vol:
    E96-C No:10
      Page(s):
    1319-1321

    This paper presents a DC output voltage-boosting antenna with high input impedance in wide frequency band for RF (radio frequency) energy harvesting of FM broadcasting signals. Target input power level of -20dBm is used to design a loop antenna for DC output voltage-boosting. The RF energy harvesting on YNU campus provides 924mV DC output for a single rectenna and 1.72V DC output for twin rectennas by receiving several FM broadcasting wave simultaneously.

  • Online Sparse Volterra System Identification Using Projections onto Weighted l1 Balls

    Tae-Ho JUNG  Jung-Hee KIM  Joon-Hyuk CHANG  Sang Won NAM  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1980-1983

    In this paper, online sparse Volterra system identification is proposed. For that purpose, the conventional adaptive projection-based algorithm with weighted l1 balls (APWL1) is revisited for nonlinear system identification, whereby the linear-in-parameters nature of Volterra systems is utilized. Compared with sparsity-aware recursive least squares (RLS) based algorithms, requiring higher computational complexity and showing faster convergence and lower steady-state error due to their long memory in time-invariant cases, the proposed approach yields better tracking capability in time-varying cases due to short-term data dependence in updating the weight. Also, when N is the number of sparse Volterra kernels and q is the number of input vectors involved to update the weight, the proposed algorithm requires O(qN) multiplication complexity and O(Nlog 2N) sorting-operation complexity. Furthermore, sparsity-aware least mean-squares and affine projection based algorithms are also tested.

  • Bayesian Nonparametric Approach to Blind Separation of Infinitely Many Sparse Sources

    Hirokazu KAMEOKA  Misa SATO  Takuma ONO  Nobutaka ONO  Shigeki SAGAYAMA  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1928-1937

    This paper deals with the problem of underdetermined blind source separation (BSS) where the number of sources is unknown. We propose a BSS approach that simultaneously estimates the number of sources, separates the sources based on the sparseness of speech, estimates the direction of arrival of each source, and performs permutation alignment. We confirmed experimentally that reasonably good separation was obtained with the present method without specifying the number of sources.

  • A Travel-Efficient Driving Assistance Scheme in VANETs by Providing Recommended Speed

    Chunxiao LI  Weijia CHEN  Dawei HE  Xuelong HU  Shigeru SHIMAMOTO  

     
    PAPER-Intelligent Transport System

      Vol:
    E96-A No:10
      Page(s):
    2007-2015

    Vehicles' speed is one of the key factors in vehicle travel efficiency, as speed is related to vehicle travel time, travel safety, fuel consumption, and exhaust gas emissions (e.g., CO2 emissions). Therefore, to improve the travel efficiency, a recommended speed calculation scheme is proposed to assist driving in Vehicle Ad hoc networks (VANETs) circumstances. In the proposed scheme, vehicles' current speed and space headway are obtained by Vehicle-to-Roadside unit (V2R) communication and Vehicle-to-Vehicle (V2V) communication. Based on the vehicles' current speed and adjacent vehicles' space headway, a recommended speed is calculated by on-board units installed in the vehicles, and then this recommended speed is provided to drivers. The drivers can change their speed to the recommended speed. At the recommended speed, vehicle travel efficiency can be improved: vehicles can arrive at destinations in a shorter travel time with fewer stop times, lower fuel consumption, and less CO2 emission. In particular, when approaching intersections, vehicles can pass through the intersections with less red light waiting time and a higher non-stop passing rate.

  • Dynamic Quantization of Nonaffine Nonlinear Systems

    Shun-ichi AZUMA  Toshiharu SUGIE  

     
    PAPER-Systems and Control

      Vol:
    E96-A No:10
      Page(s):
    1993-1998

    For quantized control, one of the powerful approaches is to use a dynamic quantizer, which has internal memories for signal quantization, with a conventional controller in the feedback control loop. The design of dynamic quantizers has become a major topic, and a number of results have been derived so far. In this paper, we extend the authors' recent result on dynamic quantizers, and applied them to a more general class of nonlinear systems, called the nonaffine nonlinear systems. Based on the performance index representing the degradation caused by the signal quantization, we propose practical dynamic quantizers, which include the authors' former result as a special case. Moreover, we provide theoretical results on the performance and on the stability of the resulting quantized systems.

  • Wireless Power Transfer from Space to Earth Open Access

    Tadashi TAKANO  

     
    INVITED PAPER

      Vol:
    E96-C No:10
      Page(s):
    1218-1226

    Microwaves have typically been used for communications and radar, but nowadays are given much attention to energy transfer applications. This paper describes microwave power transfer from a satellite to Earth that is visualized as a solar power satellite system (SPSS). After the system configuration is explained, unique engineering features are presented. Then, some contributions made by Japanese community are introduced, focusing on microwave and antenna engineering. As SPSS will handle high power levels at microwave frequency, and so components should be mass-produced to reduce the cost, then we need to shift our paradigm on the technology involved. Finally, the roadmap to a commercial SPSS is discussed.

  • Modeling of Short-Millimeter-Wave CMOS Transmission Line with Lossy Dielectrics with Specific Absorption Spectrum

    Kyoya TAKANO  Shuhei AMAKAWA  Kosuke KATAYAMA  Mizuki MOTOYOSHI  Minoru FUJISHIMA  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1311-1318

    On-chip transmission lines are widely used in ultrahigh-frequency integrated circuits. One of the issues in modeling such transmission lines is that no reference impedance can be established on a chip. Conventionally, the parallel admittance Yp has been adopted as a reference parameter for on-chip transmission lines instead of a reference characteristic impedance of 50Ω. In the case of CMOS processes, however, Yp can have complicated characteristics in the short-millimeter-wave band owing to the frequency characteristics of the electric permittivity of low-k materials, which cannot be expressed using a simple circuit. To solve this problem, we propose the use of the series impedance Zs as a reference parameter for transmission-line modeling since it basically can be determined from the geometrical dimensions and the frequency-stable permeability and resistivity. The parameters of transmission lines obtained by the proposed method were compared with those obtained by conventional methods using a 40nm CMOS process. By using the equivalent circuit model of Yp along with RLC resonators, it is shown that the peaks of the frequency characteristics of Yp can be used to explain the absorption spectrum of the dielectric. This suggests that the proposed method is suitable for CMOS short-millimeter-wave transmission lines.

  • A Calibrationless Si-CMOS 5-bit Baseband Phase Shifter Using a Fixed-Gain-Amplifier Matrix

    Tuan Thanh TA  Shoichi TANIFUJI  Suguru KAMEDA  Noriharu SUEMATSU  Tadashi TAKAGI  Kazuo TSUBOUCHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:10
      Page(s):
    1322-1329

    In this paper, we propose a novel baseband (BB) phase shifter (PS) using a fixed-gain-amplifier (FGA) matrix. The proposed BB PS consists of 5 stages of a vector synthesis type FGA matrix with in-phase/quadrature-phase (I/Q) input/output interfaces. In order to achieve low gain variation between phase shift states, 3rd to 5th stages are designed to have a phase shift of +φi and -φi (i=3,4,5). To change between +φi and -φi phase shift states, two FGAs with DC bias in-phase/out-phase switches are used. The two FGAs have the same gain, therefore ideally no gain variation can be achieved. Using this configuration, phase shift error and gain variation caused by process mismatch and temperature variation can be reduced. Fabricated 5-bit BB PS has 3-dB bandwidth of 1.05GHz, root-mean-square (rms) phase errors lower than 2.2°, rms gain variations lower than 0.42dB. Power consumption of the PS core and output buffer are 4.9mW and 14.3mW, respectively. 1-dB compression output power is -12.5dBm. The fabricated PS shows that the total phase shift error and gain variation are within the required accuracy of a 5-bit PS with no requirement of calibration.

  • Radiation Properties of a Linearly Polarized Radial Line MSA Array with Stacked Circular Patch Elements

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2440-2447

    This paper presents design and radiation properties of a radial line microstrip antenna array (RL-MSAA) for linear polarization. A stacked circular microstrip antenna (C-MSA) is used as a radiation element for the RL-MSAA. Radiation phase of the stacked C-MSA is controlled by tuning radii of the lower and upper patches, therefore, the desired phase distribution of the RL-MSAA can be designed. In this paper, a linearly polarized RL-MSAA with three concentric rows of the stacked C-MSAs at a spacing of 0.65 wavelengths for uniform aperture distribution is designed and tested in 12GHz. The experimental results reveal that validity of the linearly polarized RL-MSAA with the stacked C-MSAs for radiation phase control is demonstrated.

  • A New Representation of Elements of Binary Fields with Subquadratic Space Complexity Multiplication of Polynomials

    Ferruh ÖZBUDAK  Sedat AKLEYLEK  Murat CENK  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E96-A No:10
      Page(s):
    2016-2024

    In this paper, Hermite polynomial representation is proposed as an alternative way to represent finite fields of characteristic two. We show that multiplication in Hermite polynomial representation can be achieved with subquadratic space complexity. This representation enables us to find binomial or trinomial irreducible polynomials which allows us faster modular reduction over binary fields when there is no desirable such low weight irreducible polynomial in other representations. We then show that the product of two elements in Hermite polynomial representation can be performed as Toeplitz matrix-vector product. This representation is very interesting for NIST recommended binary field GF(2571) since there is no ONB for the corresponding extension. This representation can be used to obtain more efficient finite field arithmetic.

  • Evaluation of Interference between Parallel 120-GHz-Band Wireless Link Systems with High-Gain Cassegrain Antennas

    Jun TAKEUCHI  Akihiko HIRATA  Hiroyuki TAKAHASHI  Naoya KUKUTSU  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1294-1300

    This paper investigates space and polarization multiplexing for multichannel transmission in a 120-GHz band wireless link system. The 120-GHz-band wireless equipment employs Cassegrain antennas with a gain of about 49dBi and cross-polar discrimination of 23dB. When each of two 120-GHz wireless links transmits a 10-Gbit/s data signal in the same direction over a distance of 800m, a bit error rate (BER) of below 10-12 is obtained when the receivers are set 30m apart. When forward error correction and polarization multiplexing are used for each wireless link, we can set two wireless links within 1m of each other and obtain a BER below 10-12. Moreover, we have experimentally shown that the rain attenuation of V- and H-polarization 120-GHz-band signal is almost the same.

  • Image Restoration with Multiple DirLOTs

    Natsuki AIZAWA  Shogo MURAMATSU  Masahiro YUKAWA  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1954-1961

    A directional lapped orthogonal transform (DirLOT) is an orthonormal transform of which basis is allowed to be anisotropic with the symmetric, real-valued and compact-support property. Due to its directional property, DirLOT is superior to the existing separable transforms such as DCT and DWT in expressing diagonal edges and textures. The goal of this paper is to enhance the ability of DirLOT further. To achieve this goal, we propose a novel image restoration technique using multiple DirLOTs. This paper generalizes an image denoising technique in [1], and expands the application of multiple DirLOTs by introducing linear degradation operator P. The idea is to use multiple DirLOTs to construct a redundant dictionary. More precisely, the redundant dictionary is constructed as a union of symmetric orthonormal discrete wavelet transforms generated by DirLOTs. To select atoms fitting a target image from the dictionary, we formulate an image restoration problem as an l1-regularized least square problem, which can efficiently be solved by the iterative-shrinkage/thresholding algorithm (ISTA). The proposed technique is beneficial in expressing multiple directions of edges/textures. Simulation results show that the proposed technique significantly outperforms the non-subsampled Haar wavelet transform for deblurring, super-resolution, and inpainting.

  • Application of Optimized Sparse Antenna Array in Near Range 3D Microwave Imaging

    Yaolong QI  Weixian TAN  Xueming PENG  Yanping WANG  Wen HONG  

     
    PAPER-Sensing

      Vol:
    E96-B No:10
      Page(s):
    2542-2552

    Near range microwave imaging systems have broad application prospects in the field of concealed weapon detection, biomedical imaging, nondestructive testing, etc. In this paper, the technique of optimized sparse antenna array is applied to near range microwave imaging, which can greatly reduce the complexity of imaging systems. In detail, the paper establishes three-dimensional sparse array imaging geometry and corresponding echo model, where the imaging geometry is formed by arranging optimized sparse antenna array in elevation, scanning in azimuth and transmitting broadband signals in range direction; and by analyzing the characteristics of near range imaging, that is, the maximum interval of transmitting and receiving elements is limited by the range from imaging system to targets, we propose the idea of piecewise sparse line array; secondly, by analyzing the convolution principle, we develop a method of arranging piecewise sparse array which can generate the same distribution of equivalent phase centers as filled antenna array; then, the paper deduces corresponding imaging algorithm; finally, the imaging geometry and corresponding algorithm proposed in this paper are investigated and verified via numerical simulations and near range imaging experiments.

  • TE-Multipole DRAs for Installation on Composite Airframes

    Derek GRAY  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2417-2424

    The 4 lowest Transverse-Electric modes of a cylindrical Dielectric Resonator Antenna were investigated using a commercially available simulation software. All 4 modes were shown to produce dipole or multi-pole radiation patterns, having Transverse-Electric polarization as opposed to Transverse-Magnetic as with conventional wire antennas. The even numbered modes were shown to be applicable to the niche application of small Unmanned Aerial Vehicles to ground station communications. A practical design for the lowest order even mode was prepared, and successfully demonstrated on a carbon fiber reinforced plastic ground plane. That design was then shown in simulation to have less adverse interaction when installed on a common small Unmanned Aerial Vehicle airframe at the new 5.05GHz telemetry band than an off-airframe dipole.

  • Path Loss Characterization in a Body-Centric Scenario at 94GHz

    Alice PELLEGRINI  Alessio BRIZZI  Lianhong ZHANG  Khaleda ALI  Yang HAO  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2448-2454

    The extensive study and design of Body Area Networks (BANs) and development of related applications have been an object of interest during the last few years. Indeed, the majority of applications have been developed to operate at frequencies up to X band. However nowadays, a new growing attention is being focused on moving the study of BANs to higher frequencies such as those in V andW bands. The characterization of the on-body propagation channel is therefore essential for the design of reliable mm-wave BAN systems. However the classical methods (FDTD, MoM, FEM) commonly used at lower frequencies are not computationally efficient at mm-wave due to the large amount of mesh elements needed to discretize an electrically large geometry such as the human body. To overcome this issue, a ray tracing technique, generally used for characterizing indoor propagation, has been used to analyze a specific channel: chest-to-belt link. The reliability of this high frequency method has been investigated in this paper considering three different test cases. Moreover, a comparison of simulations and measurements, both performed on a body centric scenario at 94GHz, is also presented as well.

  • Network-Supported TCP Rate Control for the Coexistence of Multiple and Different Types of Flows on IP over PLC

    Adriano MUNIZ  Kazuya TSUKAMOTO  Masato TSURU  Yuji OIE  

     
    PAPER-Network

      Vol:
    E96-B No:10
      Page(s):
    2587-2600

    With the approval of IEEE 1901 standard for power line communications (PLC) and the recent Internet-enable home appliances like the IPTV having access to a content-on-demand service through the Internet as AcTVila in Japan, there is no doubt that PLC has taken a great step forward to emerge as the preeminent in-home-network technology. However, existing schemes developed so far have not considered the PLC network connected to an unstable Internet environment (i.e. more realistic situation). In this paper, we investigate the communication performance from the end-user's perspective in networks with large and variable round-trip time (RTT) and with the existence of cross-traffic. Then, we address the problem of unfair bandwidth allocation when multiple and different types of flows coexist and propose a TCP rate control considering the difference in terms of end-to-end delay to solve it. We validate our methodology through simulations, and show that it effectively deals with the throughput unfairness problem under critical communication environment, where multiple flows with different RTTs share the PLC and cross-traffic exists on the path of the Internet.

  • High Resolution 2-D DOA Estimation by Low-Cost Antenna Array Based on Synthesized Covariance Matrix via Antenna Switching

    Yuki DOI  Hiroki MORIYA  Koichi ICHIGE  Hiroyuki ARAI  Takahiro HAYASHI  Hiromi MATSUNO  Masayuki NAKANO  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1962-1971

    This paper presents a method of synthesizing covariance matrix elements of array input signal for high resolution 2-D Direction-Of-Arrival (DOA) estimation via antenna (sensor) switching. Antenna array generally has the same number of array elements and receiver modules which often leads large receiver hardware cost. Two of the authors have already studied a way of antenna switching to reduce receiver cost, but it can be applied only for periodic incident signals like sinusoid. In this paper, we propose two simple methods of DOA estimation from sparse data by synthesizing covariance matrix elements of array input signal via antenna switching, which can also be applied to DOA estimation of antiperiodic incident signals. Performance of the proposed approach is evaluated in detail through some computer simulation.

  • Exploiting Group Sparsity in Nonlinear Acoustic Echo Cancellation by Adaptive Proximal Forward-Backward Splitting

    Hiroki KURODA  Shunsuke ONO  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1918-1927

    In this paper, we propose a use of the group sparsity in adaptive learning of second-order Volterra filters for the nonlinear acoustic echo cancellation problem. The group sparsity indicates sparsity across the groups, i.e., a vector is separated into some groups, and most of groups only contain approximately zero-valued entries. First, we provide a theoretical evidence that the second-order Volterra systems tend to have the group sparsity under natural assumptions. Next, we propose an algorithm by applying the adaptive proximal forward-backward splitting method to a carefully designed cost function to exploit the group sparsity effectively. The designed cost function is the sum of the weighted group l1 norm which promotes the group sparsity and a weighted sum of squared distances to data-fidelity sets used in adaptive filtering algorithms. Finally, Numerical examples show that the proposed method outperforms a sparsity-aware algorithm in both the system-mismatch and the echo return loss enhancement.

  • Improved CRC Calculation Strategies for 64-bit Serial RapidIO

    Fengfeng WU  Song JIA  Qinglong MENG  Shigong LV  Yuan WANG  Dacheng ZHANG  

     
    PAPER-Electronic Circuits

      Vol:
    E96-C No:10
      Page(s):
    1330-1338

    Serial RapidIO (SRIO) is a high-performance interconnection standard for embedded systems. Cyclic Redundancy Check (CRC) provides protection for packet transmissions and impacts the device performances. In this paper, two CRC calculation strategies, based on adjustable slicing parallelization and simplified calculators, are proposed. In the first scheme, the temporary CRC result of the previous cycle (CPre) is considered as a dependent input for the new cycle and is combined with a specific segment of packet data before slicing parallelization. In the second scheme, which can reach a higher maximum working frequency, CPre is considered as an independent input and is separated from the calculation of packet data for further parallelization. Performance comparisons based on ASIC and FPGA implementations are demonstrated to show their effectiveness. Compared with the reference designs, more than 34.8% and 13.9% of average power can be improved by the two proposed schemes at 156.25MHz in 130nm technology, respectively.

5821-5840hit(21534hit)