The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

19121-19140hit(21534hit)

  • Representation of Dynamic 3D Objects Using the Coaxial Camera System

    Takayuki YASUNO  Jun'ichi ICHIMURA  Yasuhiko YASUDA  

     
    PAPER

      Vol:
    E79-B No:10
      Page(s):
    1484-1490

    3D model-based coding methods that need 3D reconstruction techniques are proposed for next-generation image coding methods. A method is presented that reconstructs 3D shapes of dynamic objects from image sequences captured using two cameras, thus avoiding the stereo correspondence problem. A coaxial camera system consisting of one moving and one static camera was developed. The optical axes of both cameras are precisely adjusted and have the same orientation using an optical system with true and half mirrors. The moving camera is moved along a straight horizontal line. This method can reconstruct 3D shapes of static objects as well as dynamic objects using motion vectors calculated from the moving camera images and revised using the static camera image. The method was tested successfully on real images by reconstructing a moving human shape.

  • Fault Localization and Supervisory Channel Implementation for Optical Linear-Repeaters in SDH/SONET-Based Networks

    Shinji MATSUOKA  Kazuyuki MATSHUMURA  Yoshiaki SATO  Yukio KOBAYASHI  Kazuo HAGIMOTO  

     
    PAPER-Optical Communication

      Vol:
    E79-B No:10
      Page(s):
    1549-1557

    This paper proposed a fault localization and supervisory (SV) channel implementation for linear-repeaters (L-Reps) employing optical line amplifiers. In order to successfully introduce L-Reps into a Synchronous Digital Hierarchy (SDH)/Synchronous Optical Network (SONET)-based networks in a smooth, orderly fashion, layering of repeater section and supervisory system design must be taken into consideration. There supervisory techniques, such as linking analog-based and digital-based information, a precedence of digital-based information and an upstream precedence, for locating faulty L-Rep sections are proposed taking into consideration the difference in monitoring capabilities between L-Reps and regenerating-type repeaters (R-Reps). Furthermore, a linear repeater supervisory (LSV) channel configuration for L-Reps is also proposed. Finally, an SV system established in a prototype SDH-based 10-Gbit/s optical transmission system is briefly described.

  • Optical Filter Utilizing the Directional Coupler Composed of the K-and Ag-ion Exchange Waveguides

    Kiyoshi KISHIOKA  Kazuya YAMAMOTO  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1405-1412

    This paper describes a narrow pass-band optical filter utilizing a wavelength-sensitive power-transfer characteristic in the directional coupler composed of the K-and Ag-ion exchange waveguides which have greatly different dispersion relations caused by the large mismatch in the index profile of the waveguide cross-section. A narrow pass-band width of about 7 nm is measured in the filter fabricated in the soda-lime glass substrate. The fabrication technique with two-step ion-exchange of the K-and Ag-ions, is also presented together with a quick design method.

  • Scattering of Millimeter Waves by Metallic Strip Gratings on an Optically Plasma-Induced Semiconductor Slab

    Kazuo NISHIMURA  Makoto TSUTSUMI  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1378-1384

    This paper presents the scattering characteristics of a TE electromagnetic plane wave by metallic strip gratings on an optically plasma-induced silicon slab at millimeter wave frequencies. The characteristics were analyzed by using the spectral domain Galerkin method and estimated numerically. We examined to control the resonance anomaly by changing the optically induced plasma density, and the metallic strip grating structures were fabricated on highly resistive silicon. The optical control characteristics of the reflection, and the forward scattering pattern by the grating structures, were measured at Q band and are discussed briefly with theory.

  • Scattering from an Infinite Array of Slots with Polar-Type Anisotropic Media

    Masamitsu ASAI  Jiro YAMAKITA  Shinnosuke SAWA  Junya ISHII  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1371-1377

    44 matrix-based analysis of electromagnetic waves scattered by an infinite array of slots with polar-type anisotropic media are presented. In the analysis, the total fields are given as sum of the fields which exist even if the apertured plane are replaced by a ground plane and the fields scattered from the magnetic currents within the apertures. The scattered fields are expanded in terms of two-dimensional Floquet modes. Expression of each fields are obtained through eigenvalue problem for 44 coupled wave matrix. Unknown magnetic currents in the apertures are determined by applying Galerkin's method to the continuity condition about the magnetic fields in the apertures. Calculated results for isotropic cases are compared with other results for the complementary problem available in the literature using Babinet's principle. Further numerical calculations are performed in the case of gratings with polar-type anisotropic slab.

  • Source and Radiation Field Solution for Dielectric Scatteres-E Wave-

    Shiro ITO  Shinobu TOKUMARU  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1338-1344

    For the expansion of using the integral equation methods on wave-field analysis, a new method called "Source and Radiation Field Solution" is suggested. This solution uses a couple of integral equations. One of them is the traditional integral expression giving the scattered field from the wave source, another is newly proposed one which expresses the wave source from both of the source and the scattered field, by using the conjugate Green function expression. Therefore this method can derive both of the source and the scattered field at the same time by coupled two equations. For showing the effect of this method, we analyze scattering problems for dielectrics in this paper.

  • Codimension Two Bifurcation Observed in a Phase Converter Circuit

    Hiroyuki KITAJIMA  Tetsuya YOSHINAGA  Hiroshi KAWAKAMI  

     
    PAPER-Nonlinear Circuits and Bifurcation

      Vol:
    E79-A No:10
      Page(s):
    1563-1567

    We investigate bifurcations of the periodic solution observed in a phase converter circuit. The system equations can be considered as a nonlinear coupled system with Duffing's equation and an equation describing a parametric excitation circuit. In this system there are two types of solutions. One is with x = y = 0 which is the same as the solution of Duffing's equation (correspond to uncoupled case), another solution is with xy0. We obtain bifurcation sets of both solutions and discuss how does the coupling change the bifurcation structure. From numerical analysis we obtain a codimension two bifurcation which is intersection of double period-doubling bifurcations. Pericdic solutions generated by these bifurcations become chaotic states through a cascade of codimension three bifurcations which are intersections of D-type of branchings and period-doubling bifurcations.

  • Nonlinear Attractive Force Model for Perceptual Clustering and Geometrical Illusions

    Hiroyuki MATSUNAGA  Kiichi URAHAMA  

     
    PAPER-Neural Nets and Human Being

      Vol:
    E79-A No:10
      Page(s):
    1587-1594

    A mathematical model based on an optimization formulation is presented for perceptual clustering of dot patterns. The features in the present model are its nonlinearity enabling the model to reveal hysteresis phenomena and its scale invariance. The clustering of dots is given by the mutual linking of dots by virtual lines. Every dot is assumed to be perceived at locations displaced from their original places. It is exemplified with simulations that the model can produce a hierarchical clustering of dots by variation in thresholds for the wiring of virtual lines and also the model can additionally reproduce some geometrical illusions semiquantitatively. This model is further extended for perceptual grouping in line segment patterns and geometrical illusions obsrved in those patterns are reproduced by the extended model.

  • Recent and Current Research on Very Low Bit-Rate Video Coding in Japan

    Masahide KANEKO  

     
    INVITED PAPER

      Vol:
    E79-B No:10
      Page(s):
    1415-1424

    This paper presents an overview of research activities in Japan in the field of very low bit-rate video coding. Related research based on the concept of "intelligent image coding" started in the mid-1980's. Although this concept originated from the consideration of a new type of image coding, it can also be applied to other interesting applications such as human interface and psychology. On the other hand, since the beginning of the 1990's, research on the improvement of waveform coding has been actively performed to realize very low bit-rate video coding. Key techniques employed here are improvement of motion compensation and adoption of region segmentation. In addition to the above, we propose new concepts of image coding, which have the potential to open up new aspects of image coding, e.g., ideas of interactive image coding, integrated 3-D visual communication and coding of multimedia information considering mutual relationship amongst various media.

  • Interactive Model-Based Coding of Facial Image Sequence with a New Motion Detection Algorithm

    Kazuo OHZEKI  Takahiro SAITO  Masahide KANEKO  Hiroshi HARASHIMA  

     
    PAPER

      Vol:
    E79-B No:10
      Page(s):
    1474-1483

    To make the model-based coding a practical method, new signal processing techniques other than fully-automatic image recognition should be studied. Also after having realized the model-based coding, another new signal processing technique to improve the performance of the model-based coding should be studied. Moreover non-coding functions related to the model-based coding can be embedded as additional features. The authors are studying the interactive model-based coding in order to achieve its practical realization, improve its performance and extend related non-coding functions. We have already proposed the basic concept of interactive model-based coding and presented an eyeglasses processing for a facial image with glasses to remove the frame for improving the model-based coding performance. In this paper, we focus on the 3-D motion detection algorithm in the interactive model-based coding. Previous works were mainly based on iterative methods to solve non-linear equations. A new motion detection algorithm is developed for interactive model-based coding. It is linear because the interactive operation generates more information and the environment of the applications limits the range of parameters. The depth parameter is first obtained by the fact that a line segment is invariant as to 3-D space transformation. Relation of distance between two points is utilized. The number of conditions is larger than that of the unknown variables, which allows to use least square method for obtaining stable solutions in the environment of the applications. Experiments are carried out using the proposed motion detection method and input noise problems are removed. Synthesized wireframe modified by eight parameters provides smooth and natural motion.

  • A Pattern Vector Quantization Scheme for Mid-range Frequency DCT Coefficients

    Dennis Chileshe MWANSA  Satoshi MIZUNO  Makoto FUJIMURA  Hideo KURODA  

     
    PAPER

      Vol:
    E79-B No:10
      Page(s):
    1452-1458

    In DCT transform coding it is usually necessary to discard some of the ac coefficients obtained after the transform operation for data compression reasons. Although most of the energy is usually compacted in the few coefficients that are transmitted, there are many instances where the discarded coefficients contain significant information. The absence of these coefficients at the decoder can lead to visible degradation of the reconstructed image especially around slow moving objects. We propose a simple but effective method which uses an indirect form of vector quantization to supplement scalar quantization in the transform domain. The distribution pattern of coefficients that fall below a fixed threshold is vector quantized and an index of the pattern chosen from a codebook is transmitted together with two averages; one for the positive coefficients and the other for negative coefficients. In the reconstruction, the average values are used instead of setting the corresponding coefficients to zero. This is tantamount to quantizing the mid range frequency coefficients with 1 bit but the resulting bit-rate is much less. We aim to propose an alternative to using traditional vector quantization which entails computational complexities and large time and memory requirements.

  • Lasing Characteristics of Optical Fiber Brillouin Ring Laser with Spatially Distributed Gain Coefficient

    Yosuke TANAKA  Kazuo HOTATE  

     
    PAPER-Opto-Electronics

      Vol:
    E79-C No:10
      Page(s):
    1436-1441

    The thermal and/or the tensile strain distribution along the fiber make the Brillouin gain coefficient different in each point of the fiber. As a basic study of the Brillouin fiber optic gyro, its effect on lasing characteristics of a fiber Brillouin ring laser is formulated in the general form by using the statistical function and then calculation is done for typical values of the parameters. By suppressing the polarization-fluctuation-induced noise caused by the temperature, an example of the effect of the spatially distributed gain coefficient is experimentally demonstrated.

  • Modeling on Statistical Distribution of Optimal Noise Figure in Pulse-Doped GaAs MESFET's

    Nobuo SHIGA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E79-C No:10
      Page(s):
    1442-1448

    Process-related variation of optimal noise figures (Fo) in pulse-doped GaAs MESFET's is discussed in this paper. Fluctuation in gate length of the proposed devices is shown to be a dominant source of variation in noise parameters. The statistical distribution of the optimal noise figure is modeled by using the gaussian approximation of the distribution in gate length; the probability density function of Fo is derived. A comparison between the calculated results by the derived probability density function and the measured distribution of Fo showed good agreement.

  • Acceleration Techniques for Waveform Relaxation Approaches to Coupled Lossy Transmission Lines Circuit Analysis Using GMC and GLDW Techniques

    Takayuki WATANABE  Hideki ASAI  

     
    PAPER-Nonlinear Circuits and Bifurcation

      Vol:
    E79-A No:10
      Page(s):
    1538-1545

    This paper describes a waveform relaxationbased coupled lossy transmission line circuit simulator DESIRE3T+. First, the generalized method of characteristics (GMC) is reviewed, which replaces a lossy transmission line with an equivalent disjoint network. Next, the generalized line delay window (GLDW) partitioning technique is proposed, which accelerates the transient analysis of the circuits including transmission lines replaced by GMC model. Finally GMC model and GLDW technique are implemented in hte relaxation-based circuit simulator DESIRE3T+ which can analyze bipolar transistor circuits by using the dynamic decomposition technique, and the performance is estimated.

  • Satsuki: An Integrated Processor Synthesis and Compiler Generation System

    Barry SHACKLEFORD  Mitsuhiro YASUDA  Etsuko OKUSHI  Hisao KOIZUMI  Hiroyuki TOMIYAMA  Hiroto YASUURA  

     
    PAPER-Hardware-Software Codesign

      Vol:
    E79-D No:10
      Page(s):
    1373-1381

    Entire systems on a chip (SOCs) embodying a processor, memory, and system-specific peripheral hardware are now an everyday reality. The current generation of SOC designers are driven more than ever by the need to lower chip cost, while at the same time being faced with demands to get designs to market more quickly. It was to support this new community of designers that we developed Satsuki-an integrated processor synthesis and compiler generation system. By allowing the designer to tune the processor design to the bitwidth and performance required by the application, minimum cost designs are achieved. Using synthesis to implement the processor in the same technology as the rest of the chip, allows for global chip optimization from the perspective of the system as a whole and assures design portability. The integral compiler generator, driven by the same parameters used for processor synthesis, promotes high-level expression of application algorithms while at the same time isolating the application software from the processor implementation. Synthesis experiments incorporating a 0.8 micron CMOS gate array have produced designs ranging from a 45 MHz, 1,500 gate, 8-bit processor with a 4-word register file to a 31 MHz, 9,800 gate, 32-bit processor with a 16-word register file.

  • Correlation Statistics Distribution Convolution(CSDC) Modeling for Studying CDMA Indoor Wireless Systems with RAKE Receiver, Power Control & Multipath Fading

    Xiao Hua CHEN  Tao LANG  Juhani OKSMAN  

     
    PAPER-Switching and Communication Processing

      Vol:
    E79-B No:10
      Page(s):
    1525-1536

    A new scheme to study the performance of a DS/CDMA indoor wireless system, the correlation statistics distribution convolution(CSDC)modeling, is introduced in this paper. With the aid of the CSDC modeling, the bit error rate versus number of simultaneous interfering transmitters can be directly evaluated, considering the effects of Rayleigh fading, power control, multipath and co-channel interference. The performance of two CDMA receiver structures, conventional correlator and RAKE receiver, is compared. It is shown that the RAKE receiver is effective in improving the system performance under indoor multipath fading. However, its effectiveness under transmitter power control is sensitive to the severity of multipath interference in the indoor channel. When the multipath fading is severe, a tight power control over the main paths may not be able to improve the performance of the RAKE receiver.

  • Technology Mapping for FPGAs with Composite Logic Block Architectures

    Hsien-Ho CHUANG  C. Bernard SHUNG  

     
    PAPER-Logic Synthesis

      Vol:
    E79-D No:10
      Page(s):
    1396-1404

    A new technology mapping algorithm is developed on a general model of FPGA with composite logic block architectures, consisting of different sizes of look-up tables (LUTs) and possibly different logic gates. In additions, the logic blocks may have hard-wired connections and limit accessible fanouts. Xilinx XC4000 is one example containing LUTs of different sizes and AT&T ORCA is another example containing both LUTs and logic gates. We use a multiple-fanout pattern graph library to model the composite logic block and a premapping technique to generate the subject graph dynamically. A new matching algorithm and a new covering algorithm are also developed for the subject graph covering. The experimental results show that our algorithm is an effective technology mapper for FPGAs with composite logic block architectures, especially for larger circuits. Over a set of MCNC benchmarks, our algorithm requires on the average 4.25% fewer CLBs than PPR, 6.79% fewer CLBs than TEMPT, and 2,79% fewer CLBs than ASYL when used as the XC4000 mapper. Over a set of larger benchmarks, our algorithm outperforms PPR by 13.70%. Very encouraging results were obtained when our algorithm is used as an ORCA mapper, while there was no prior published results.

  • A Design Principle for Colored-Noise-Tolerant Optimum Despreading-Code Sequences for Spread-Spectrum Systems

    Noriyoshi KUROYANAGI  Kohei OHTAKE  Keiko AKIYAMA  

     
    PAPER-Mobile Communication

      Vol:
    E79-B No:10
      Page(s):
    1558-1569

    To improve the demodulated signal-to-noise ratio, SNR, for colored noise environments, we present a new direct-sequence spread-spectrum receiver system, whose construction is based on the concept of Shaped M-sequence Demodulation (SMD). This receiver has the function for shaping the local dispreading-code waveform. This method can modify the frequency transfer function from a received input to the damp-integrated output according to the power spectrum of colored noise added in the transmission process. SMD performs the combined function of a whitening filter and a matched filter, which can be used to implement an optimum receiver. For the case when the additive colored-noise power spectrum is known and the transmission channel is non-band-limited, a design theory is derived that provides the maximum SNR by choosing the best dispreading-code sequence corresponding to a given signature spreading-code sequence. The noise power component produced in the receiver damp-integrated-output is anayzed by introducing the auto-correlation matrix of the additive noise. The SNR performance of systems, one using non-optimized codes and the other using optimized codes, is examined and compared for various noise models. It is verified by analysis and computer simulation that, compared to a conventional system using non-optimized codes, remarkable SNR improvements can be achieved due to the whitening effect acquired without producing inter-symbol interference. In contrast, if a transversal whitening filter is front-ended, it produces inter-frame interference, degrading the SNR performance. The band-limiting effect of the transmission channel is also analyzed, and we confirmed that the codes optimized for the non-band-limited channel can be applied to the band-limited channel with little degradation of SNR. SMD is inherently tolerant of fast-changing noise such as fading, due to its frame-by-frame operation. Considering this function as a general demodulation scheme, it may be called "Local Code Filtering."

  • An Efficient Timing-Driven Global Routing Method for Standard Cell Layout

    Tetsushi KOIDE  Takeshi SUZUKI  Shin'ichi WAKABAYASHI  Noriyoshi YOSHIDA  

     
    PAPER-Lauout Synthesis

      Vol:
    E79-D No:10
      Page(s):
    1410-1418

    This paper presents a new timing-driven global routing method for standard cell layout. The proposed method can explicitly consider the timing constraint between two registers and minimize the channel density under the given timing constraint. In the proposed method, first, we determine the initial global routes. Next, we improve the global routes to satisfy the timing constraint between two registers as well as to minimize the channel density. Finally, for each cell row, the nets incident to terminals on the cell row are assigned to channels to minimize the channel density using 0-1 integer linear programming. We also show the experimental results of the proposed method implemented on an engineering workstation. Experimental results show that the proposed method is quite promising.

  • RTC-Threads: A User-Level Real-Time Threads Package for Multimedia Systems

    Shuichi OIKAWA  Hideyuki TOKUDA  

     
    PAPER-Sofware System

      Vol:
    E79-D No:10
      Page(s):
    1443-1452

    In forthcoming multimedia environments, continuous-media data, such as video and audio data, will be used by a variety of multimedia applications. Multimedia applications require efficient and flexible support from real-time operating systems. This is because the changes in system and network loads require dynamic management of real-time thread behavior. If threads are implemented at the user level, operations on threads can be processed at the user level, and the efficient management of threads becomes possible by avoiding kernel interventions. Thus, we can provide an effective platform for multimedia applications. The goal of our work is to realize high-performance user-level real-time threads which satisfy the above requirements of multimedia systems. In this paper we describe the design and implementation of a user-level real-time threads package, called RTC-Threads, which is being developed on the RT-Mach microkernel. The results of performance evaluations show that our user-level real-time threads outperform real-time kernel-provided threads, which are implemented in the microkernel, in terms of efficiency and accuracy.

19121-19140hit(21534hit)