The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

19141-19160hit(21534hit)

  • Interactive Model-Based Coding of Facial Image Sequence with a New Motion Detection Algorithm

    Kazuo OHZEKI  Takahiro SAITO  Masahide KANEKO  Hiroshi HARASHIMA  

     
    PAPER

      Vol:
    E79-B No:10
      Page(s):
    1474-1483

    To make the model-based coding a practical method, new signal processing techniques other than fully-automatic image recognition should be studied. Also after having realized the model-based coding, another new signal processing technique to improve the performance of the model-based coding should be studied. Moreover non-coding functions related to the model-based coding can be embedded as additional features. The authors are studying the interactive model-based coding in order to achieve its practical realization, improve its performance and extend related non-coding functions. We have already proposed the basic concept of interactive model-based coding and presented an eyeglasses processing for a facial image with glasses to remove the frame for improving the model-based coding performance. In this paper, we focus on the 3-D motion detection algorithm in the interactive model-based coding. Previous works were mainly based on iterative methods to solve non-linear equations. A new motion detection algorithm is developed for interactive model-based coding. It is linear because the interactive operation generates more information and the environment of the applications limits the range of parameters. The depth parameter is first obtained by the fact that a line segment is invariant as to 3-D space transformation. Relation of distance between two points is utilized. The number of conditions is larger than that of the unknown variables, which allows to use least square method for obtaining stable solutions in the environment of the applications. Experiments are carried out using the proposed motion detection method and input noise problems are removed. Synthesized wireframe modified by eight parameters provides smooth and natural motion.

  • Acceleration Techniques for Waveform Relaxation Approaches to Coupled Lossy Transmission Lines Circuit Analysis Using GMC and GLDW Techniques

    Takayuki WATANABE  Hideki ASAI  

     
    PAPER-Nonlinear Circuits and Bifurcation

      Vol:
    E79-A No:10
      Page(s):
    1538-1545

    This paper describes a waveform relaxationbased coupled lossy transmission line circuit simulator DESIRE3T+. First, the generalized method of characteristics (GMC) is reviewed, which replaces a lossy transmission line with an equivalent disjoint network. Next, the generalized line delay window (GLDW) partitioning technique is proposed, which accelerates the transient analysis of the circuits including transmission lines replaced by GMC model. Finally GMC model and GLDW technique are implemented in hte relaxation-based circuit simulator DESIRE3T+ which can analyze bipolar transistor circuits by using the dynamic decomposition technique, and the performance is estimated.

  • Spread-Spectrum Sharing Using Comb Spectrum Structure in a Microcell/Macrocell Cellular Architecture

    Tomoko ADACHI  Masao NAKAGAWA  

     
    PAPER-Mobile Communication

      Vol:
    E79-B No:10
      Page(s):
    1577-1585

    Spread-spectrum (SS) sharing with comb spectrum structure in a microcell/macrocell cellular architecture in order to increase spectral efficiency is proposed. Such method employs a filter in the code division multiple access (CDMA) transmitter to feature comb spectrum structure, and suppress interference with a narrowband time division multiple access (TDMA) system in using together in SS sharing. The relationship between microcellular capacity and macrocellular capacity of the system is explored and compared to those of conventional SS sharing and orthogonal sharing. To be concrete, we investigate two cases, i.e., using no power control and ideal power control in the TDMA system. In both cases, the proposed SS sharing gives better capacity results than the conventional SS sharing and in the comparison when ideal power control is used in th. TDMA system, it even has the property to oppose the orthogonal sharing in ideal condition without interference.

  • A Model-Based Active Landmarks Tracking Method

    Ronghua YAN  Naoyuki TOKUDA  Juichi MIYAMICHI  

     
    LETTER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:10
      Page(s):
    1477-1482

    Unlike the time-consuming contour tracking method of snakes [5] which requires a considerable number of iterated computations before contours are successfully tracked down, we present a faster and accurate model-based landmarks" tracking method where a single iteration of the dynamic programming is sufficient to obtain a local minimum to an integral measure of the elastic and the image energy functionals. The key lies in choosing a relatively small number of salient land-marks", or features of objects, rather than their contours as a target of tracking within the image structure. The landmarks comprising singular points along the model contours are tracked down within the image structure all inside restricted search areas of 41 41 pixels whose respective locations in image structure are dictated by their locations in the model. A Manhattan distance and a template corner detection function of Singh and Shneier [7] are used as elastic energy and image energy respectively in the algorithm. A first approximation to the image contour is obtained in our method by applying the thin-plate spline transformation of Bookstein [2] using these landmarks as fixed points of the transformation which is capable of preserving a global shape information of the model including the relative configuration of landmarks and consequently surrounding contours of the model in the image structure. The actual image contours are further tracked down by applying an active edge tracker using now simplified line search segments so that individual differences persisting between the mapped model contour are substantially eliminated. We have applied our method tentatively to portraits of a class album to demonstrate the effectiveness of the method. Our experiments convincingly show that using only about 11 feature points our method provides not only a much improved computational complexity requiring only 0.94sec. in CPU time by SGI's indigo2 but also more accurate shape representations than those obtained by the snakes methods. The method is powerful in a problem domain where the model-based approach is applicable, possibly allowing real time processing because a most time consuming algorithm of corner template evaluation can be easily implemented by parallel processing firmware.

  • A Contraction Algorithm Using a Sign Test for Finding All Solutions of Piecewise-Linear Resistive Circuits

    Kiyotaka YAMAMURA  Masakazu MISHINA  

     
    LETTER-Nonlinear Problems

      Vol:
    E79-A No:10
      Page(s):
    1733-1736

    An efficient algorithm is proposed for finding all solutions of piecewise-linear resistive circuits The algorithm is based on the idea of "contraction" of the solution domain using a sign test. The proposed algorithm is efficient because many large super-regions containing no solution are eliminated in early steps.

  • Human Performance Analysis and Engineering Guidelines for Designing Graphical Network Management Interfaces

    Kenichi MASE  James P. CUNNINGHAM  Judy CANTOR  Hiromichi KAWANO  Joseph P. ROTELLIA  Tetsuo OKAZAKI  Timothy J. LIPETZ  Yuji HATAKEYAMA  

     
    PAPER-Communication Networks and Services

      Vol:
    E79-B No:10
      Page(s):
    1491-1499

    This study clarifies the effects of network complexity and network map transformation on the ability of network managers to use graphic network displays. Maps of Japan and the United States with outlines of their respective prefectures or states were displayed on a CRT. Each map displayed a fictitious network of nodes and their interconnections. These networks were two-level hierarchical and non-meshed, meaning that each low-level node was connected to a single high-level node, but not all high-level nodes were linked together. The subjects, task was to identify a path between two low-level nodes. In each trial, two low-level nodes were highlighted, and the subject attempted to find the shortest path between these nodes. This was done by using a mouse to select intermediate nodes. Completing a path required a minimum of 4 node traversals. Three variables were manipulated. First, the number of nodes was defined as the total number of low-level nodes in a network (70, 150, or 200). The second variable was the level of transformation. Very densely populated areas of the maps were systematically transformed to reduce congestion. There were three levels of transformation. The final variable was the country map used, that is, the map of Japan and the map of the United States. Several behavioral measures were used. The most informativ. appeared to be the time required to complete a path (the response time), and how often subjects returned to previous portions of a path (back-ups). For both of these measures, the data pattern was essentially the same. Increasing the number of nodes hurts performance. This was particularly pronounced when the map of Japan was tested. However, as the level of transformation increased, this effect was substantially reduced or completely eliminated. The results are discussed in terms of engineering rules and guidelines for designing graphical network representations.

  • Symmetry Breaking and Recovering in a System of n Hybridly Coupled Oscillators

    Olivier PAPY  Hiroshi KAWAKAMI  

     
    PAPER-Nonlinear Circuits and Bifurcation

      Vol:
    E79-A No:10
      Page(s):
    1568-1574

    We consider a ring of n Rayleigh oscillators coupled hybridly. Using the symmetrical property of the system we demonstrate the degeneracy of the Hopf bifurcation of the equilibrium at the origin. The degeneracy implies the exstence and stability of the n-phase oscillation. We discuss some consequences of the perturbation of the symmetry. Then we study the case n = 3. We show the bifurcation diagram of the equilibria and of hte periodic solutions. Especially, we analyze the mechanism for the symmetry breaking bifurcation of the fully symmetric solution. We report and explain the occurrence of both chaotic attractors and repellors and show two types of symmetry recovering crisis they undergo.

  • ASYL-SdF: A Synthesis Tool for Dependability in Controllers

    Raphael ROCHET  Regis LEVEUGLE  Gabriele SAUCIER  

     
    PAPER-High-Level Synthesis

      Vol:
    E79-D No:10
      Page(s):
    1382-1388

    Synthesis tools are now extensively used in the VLSI circuit design process. They allow a much higher design productivity, but the designer often does not directly control the circuit structure. Thus, when circuits are dedicated to dependable applications, designers have difficulties in implementing manually the devices needed to obtain fault detection or tolerance capabilities. The ASYL-SdF System has been developed over the last few years in order to avoid this break in the design flow, and to facilitate the designer's work when dependability is targeted. This paper gives an overview of the resulting tool, its synthesis flow for fault detection and fault tolerance in Finite State Machines, its limitations and the current developments. Actual circuit implementation results are given in terms of area overheads, expected reliability and experimental fault detection coverage.

  • Coupling Efficiency of Grating Coupler for the Gaussian Light Beam Incidence

    Masaji TOMITA  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1420-1429

    In this paper, scattering problem of the grating coupler is analyzed by the mode-matching method in the sense of least squares for the gaussian light beam incidence. This coupler has a periodic groove structure of finite extent, which is formed on the surface of the core layer of the symmetric thin-film waveguide. In the present method, the approximate scattered fields of each region of the grating coupler are described by the superpositions of the plane waves with band-limited spectra, respectively. These approximate wave functions are determined by the minimization of the mean-square boundary residual. This method results in the simultaneous Fredholm type integral equations of the second kind for these spectra. The first and second order approximate solutions of the integral equations are derived analytically and the coupling efficiency and scattered fields are analyzed on the basis of those solutions. A qualitative and physical consideration for the scattering problem of the grating coupler is presented with the fundamental data derived from approximate solutions in this paper.

  • Reconstruction of Two Dimensional Rough Surface with Gaussian Beam Illumination

    Kazunori HARADA  Akira NOGUCHI  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1345-1349

    A method is presented for reconstructing the surface profile of a two dimensional rough surface boundary from the scattered far field data. The proposed inversion algorithm is based on the Kirchhoff approximation and in order to determine the surface profile, the numerical results illustrating the method are presented.

  • Motion-Compensated Prediction Method Based on Perspective transform for Coding of Moving Images

    Atsushi KOIKE  Satoshi KATSUNO  Yoshinori HATORI  

     
    PAPER

      Vol:
    E79-B No:10
      Page(s):
    1443-1451

    Hybrid image coding method is one of the most promising methods for efficient coding of moving images. The method makes use of jointly motion-compensated prediction and orthogonal transform like DCT. This type of coding scheme was adopted in several world standards such as H.261 and MPEG in ITU-T and ISO as a basic framework [1], [2]. Most of the work done in motion-compensated prediction has been based on a block matching method. However, when input moving images include complicated motion like rotation or enlargement, it often causes block distortion in decoded images, especially in the case of very low bit-rate image coding. Recently, as one way of solving this problem, some motion-compensated prediction methods based on an affine transform or bilinear transform were developed [3]-[8]. These methods, however, cannot always express the appearance of the motion in the image plane, which is projected plane form 3-D space to a 2-D plane, since the perspective transform is usually assumed. Also, a motion-compensation method using a perspective transform was discussed in Ref, [6]. Since the motion detection method is defined as an extension of the block matching method, it can not always detect motion parameters accurately when compared to gradient-based motion detection. In this paper, we propose a new motion-compensated prediction method for coding of moving images, especially for very low bit-rate image coding such as less than 64 kbit/s. The proposed method is based on a perspective transform and the constraint principle for the temporal and spatial gradients of pixel value, and complicated motion in the image plane including rotation and enlargement based on camera zooming can also be detected theoretically in addition to translational motion. A computer simulation was performed using moving test images, and the resulting predicted images were compared with conventional methods such as the block matching method using the criteria of SNR and entropy. The results showed that SNR and entropy of the proposed method are better than those of conventional methods. Also, the proposed method was applied to very low bit-rate image coding at 16 kbit/s, and was compared with a conventional method, H.261. The resulting SNR and decoded images in the proposed method were better than those of H.261. We conclude that the proposed method is effective as a motion-compensated prediction method.

  • A Partial Scan Design Approach based on Register-Transfer Level Testability Analysis

    Akira MOTOHARA  Sadami TAKEOKA  Mitsuyasu OHTA  Michiaki MURAOKA  

     
    PAPER-Design for Testability

      Vol:
    E79-D No:10
      Page(s):
    1436-1442

    An approach to design for testability using register-transfer level (RTL) partial scan selection is described. We define an RTL circuit model which enables efficient description in an electronic system design automation (ESDA) tool and testability analysis which leads to effective partial scan selection for RTL design including data path circuits and control circuits such as state machines. We also introduced a method of partial scan selection at RTL which selects critical registers and state machines based on RTL testability analysis. DFT techniques using gate level testability measures have been studied and concluded that they are not successful in achieving high fault coverage [15]. However, we started this work for the following reasons, 1) In sequential ATPG procedure, more than two memory elements belonging to a functional units such as registers and state machines are often required to be justified at a time. At RTL, state machines and registers are explicitly described and recognized as functional units while gate level memory elements are scattered over the circuit. 2) As discussed in [6], if the circuit is modified so that the test sequence which causes state transition between initial and final states of sequential ATPG can be easily obtained, ATPG results can be also improved. Complex state machines can be identified at RTL. According to the experimental results, our gate level DFT achieves high fault coverage comparable with the previously published most successful DFT methods, and DFT at RTL resulted in higher fault coverage than gate level DFT at much shorter CPU time.

  • FDTD Analysis of Electromagnetic Interaction between Portable Telephone and Human Head

    Masao TAKI  So-ichi WATANABE  Toshio NOJIMA  

     
    INVITED PAPER

      Vol:
    E79-C No:10
      Page(s):
    1300-1307

    Finite-difference time-domain (FDTD) analysis is performed to evaluate the distributions of specific absorption rate (SAR) in a human head during use of a handheld portable telephone. A heterogeneous head model has been assumed which is comprised of 273 108 cubic cells 2.5 mm on a side, with the electrical properties of anatomical equivalents. A handset model has been assumed to be a metal box with either a quarter-wavelength monopole or a half-wavelength dipole operating at 900 MHz or 1.5 GHz. The maximum local SARs in the head are evaluated under various exposure conditions. The dependence of the maximum local SARs on the difference in the structures or parameters of the model, i.e. the distance between the antenna and the head, the heterogeneity of the head, the antenna type, the volume of the smoothing region of the local SAR value, skin electrical constants, and the presence or absence of auricles, are examined. It is shown that the heterogeneity of the head barely affect the maximum local SAR when the telephone is located sufficiently close to the head. It is also shown that the electrical constants of skin which has lower conductivity provide the lower maximum local SAR in the head while the maximum local SAR within the brain is not significantly affected. The auricle which lies in closest proximity to the antenna is shown to have significant effect on the maximum local SAR. It is suggested that the presence of the auricle enhances the maximum local SAR by a factor that is 1.7-2.4 larger than the model without auricles.

  • New Time-Domain Stability Criterion for Fuzzy Control Systems

    Xihong WANG  Tadashi MATSUMOTO  

     
    PAPER-Control and Optics

      Vol:
    E79-A No:10
      Page(s):
    1700-1706

    In this paper, an extention for Haddad's method, which is the time-domain stability analysis on scalar nonlinear control systems, to multi-variable nonlinear control systems are proposed, and it is shown that these results are useful for the stability analysis of nonlinear control systems with various types of fuzzy controllers.

  • Estimation of Noncausal Model for Random Image with Double Peak Spectrum

    Shigeyuki MIYAGl  Hisanao OGURA  

     
    PAPER-Image Theory

      Vol:
    E79-A No:10
      Page(s):
    1725-1732

    A new type of noncausal stochastic model is proposed to represent a random image with double peak spectrum. The model based on the assumption that the double peak spectrum is expressed by a product of two spectra located at two symmetric positions in the 2D spatial frequency space. Estimation of model parameters is made by means of minimizing the "whiteness" which was proposed in authors' previous work. In a simulation for model estimation we make use of computer-generated random images with double peak spectrum. Comparing this with the estimation by a causal model, we demonstrate that the present method can better estimate not only the spectral peak location but also the spectral shape. The proposed model can be extend to an image model with multl-peak spectrum. However, Increase of parameters makes the model estimation more difficult We try a model with triple peak spectra since a real texture image usually possesses a spectral peak at the origin besides the two peaks. A result shows that the estimation of three spectral positions are good enough, but their spectral shapes are not necessarily satisfactory. It is expected that the estimation of multi-peaked spectral model can be made better by improving the process of minimizing the "whiteness."

  • A Coded Modulation Design with Equal Utilization of Signal Dimensions on Two Carrier Frequencies Using a Simple Convolutional Code

    Chin-Hua CHUANG  Lin-Shan LEE  

     
    PAPER-Communication Theory

      Vol:
    E79-B No:10
      Page(s):
    1537-1548

    This paper presents an improved pragmatic approach to coded modulation design which provides higher coding gains especially for very noisy channels including those with Rayleigh fading. The signal constellation using four equally utilized dimensions implemented with two correlative carrier frequencies is adopted to enhance the performance of the pragmatic approach previously proposed by Viterbi et al.. The proposed scheme is shown to perform much better by analysis of system performance parameters and extensive computer simulation for practical channel conditions. The bandwidth and power efficiencies are also analyzed and discussed to provide more design flexibility for different communications environments.

  • Performance Improvement of PRML System for (1, 7) RLL Code

    Hisashi OSAWA  Makoto OKADA  Kohei WAKAMIYA  Yoshihiro OKAMOTO  

     
    PAPER-Recording and Memory Technologies

      Vol:
    E79-C No:10
      Page(s):
    1455-1461

    The performance improvement of the partial response maximum-likelihood (PRML) system for (1, 7) run-length limited (RLL) code is studied. As a new PRML system, PR (1, 1, 0, 1, 1) system called modified E2PR4 (ME2PR4 ) followed by Viterbi detector for (1, 7) RLL code is proposed. At first, a determination method of the tap weights in transversal filter to equalize to PR (1, 1, 0, 1, 1) characteristic taking account of a noise correlation is described. And the equalization characteristics of the transversal filter are evaluated. Then, a Viterbi detector for ME2PR4 utilizing the constraint of run-length of (1, 7) RLL code is presented. Finally, the bit-error rate is obtained by computer simulation and the performance is compared with that of the conventional PRML systems called PR4, EPR4 and E2PR4 systems with Viterbi detector. The results show that among these systems our system exhibits the best performance and the SNR improvement increases with the increase in the linear density.

  • Analysis of Microstrip Line with a Trapezoidal Dielectric Ridge in Multilayered Media by Partial-Boundary Element Method

    Keren LI  Kazuhiko ATSUKI  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1413-1419

    In this paper, we present an analysis of microstrip line with a trapezoidal dielectric ridge in multilayered media. The method employed in this characterization is called partial-boundary element method (p-BEM) which provides an efficient technique to the analysis of the structures with multilayered media. To improve the convergence of the Green's function used in the analysis with the P-BEM, we employ a technique based on a combination of the Fourier series expansion and the method of images. Treatment on convergence for the boundary integrals is also described. After this treatment, it requires typically one tenth or one hundredth of Fourier terms to obtain the same accuracy compared with the original Green's function. Numerical results are presented for two microstrip lines that have a trapezoidal dielectric ridge placed on a one-layered substrate and a two-layered substrate. These numerical results demonstrate the effects on the characteristics of the microstrip line due to the existence of the dielectric ridge as well as the second layer between the ridge and the fundamental substrate.

  • A Novel Technique of Harmonic Rejection of the Sequential Type PLL Phase Detector and Its Application to Single-Loop Frequency Synthesis

    S. K. SEN  S. SARKAR  P. K. GUPTA  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E79-C No:10
      Page(s):
    1467-1471

    This letter demonstrates that, under certain condition, the harmonic content of a rectangular pulse train is reduced by a considerable extent in the presence of another equal frequency pulse train of opposite polarity. The condition for maximum harmonic rejection is derived. It is also shown that this technique can, very effectively, be applied to reduce the harmonic content of a sequential phase detector (PD) output. This letter also presents the experimental performance of a sequential PD, incorporating this technique, in a single-loop synthesizer.

  • Waveguide Bandpass Filter of Millimeter Waves Using Two Ferrite Chips

    Hirofumi HASEGAWA  Hitoshi SHIMASAKI  Makoto TSUTSUMI  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E79-C No:10
      Page(s):
    1472-1474

    This paper describes the properties of a TE10 metal waveguide filter using two polycrystalline ferrite chips at millimeter wave frequencies. The frequency response of the filter has been analyzed using the mode-matching technique, and optimized by the computer technique. The bandpass filter characteristics with high dynamic range more than 30dB was obtained with insertion loss of 1.5dB and good magnetically tunable response is observed with a quality factor of 200, which agrees considerably well with predicted values.

19141-19160hit(21534hit)