The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

20741-20760hit(30728hit)

  • Modified Backoff Algorithm with Station Number Adaptiveness for IEEE 802.11 Wireless LANs

    Huirae CHO  Sin-Chong PARK  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:12
      Page(s):
    3626-3629

    The IEEE 802.11 WLAN standards adopt CSMA/CA protocol with a backoff algorithm as medium access control technique. When the number of stations which attempt to access a network increases, the throughput efficiency of the standard goes down. In this paper, we propose a modified backoff algorithm which adaptively selects the Contention Window (CW) size according to the variation of the number of contending stations and present the results of simulation analysis.

  • An Improvement of the Perturbation Method Using a TM010 Mode Cylindrical Cavity

    Hirokazu KAWABATA  Hiroshi TANPO  Yoshio KOBAYASHI  

     
    PAPER-Measurement

      Vol:
    E86-C No:12
      Page(s):
    2371-2378

    Effects of the sample insertion holes of the TM010 mode cylindrical cavity are analyzed on the basis of rigorous analysis by the Ritz-Galerkin method. The measurement accuracy of complex permittivity is examined by comparing the values by the perturbation method with ones by the rigorous analysis. Charts of relative errors Δ ε/εp and Δ tan δ/tan δp are presented, which are useful to measure the complex permittivity accurately by the perturbation method. The present analysis extends the validity of the conventional perturbation method.

  • Characteristics of GaAs HEMTs with Flip-Chip Interconnections

    Naoko ONO  Fumio SASAKI  Kazuhiro ARAI  Hiroyuki YOSHINAGA  Yuji ISEKI  

     
    PAPER-Amplifier

      Vol:
    E86-C No:12
      Page(s):
    2452-2461

    A GaAs HEMT with flip-chip interconnections using a suitable transmission line has been developed. The underfill resin, which was not used for the conventional flip-chip interconnection structure, was adopted between GaAs chip and assembly substrate to obtain high reliability. The underfill resin is effective in relaxing the thermal stress between the chip and the substrate and in encapsulating the chip. There are various possible ground current paths for the GaAs chip in the structure with flip-chip interconnections. An actual ground current path is determined depending on the transmission line type for the chip. For an active device, it is important to utilize an assembly structure capable of realizing excellent high-frequency characteristics. In addition, each transmission line for the chip has its own transmission characterizations such as characteristic impedance. Therefore, it is necessary to choose a suitable transmission line for the chip. We evaluated the high-frequency characteristics of the HEMT test element groups (TEGs) with flip-chip interconnection for three types of transmission lines: with a microstrip line (MSL), with a coplanar waveguide (CPW), and with an inverted microstrip line (IMSL). All three types of TEGs had similar values of a maximum available power gain (MAG) at 30 GHz. However, it was found that the IMSL-type TEG, which had superior characteristics in high-frequency ranges of more than 30 GHz, is the most suitable type. The IMSL-type TEG had an MAG of 10.02 dB and a Rollett stability factor K of 1.20 at 30 GHz.

  • A Study on an Antenna Selection Scheme for Space-Time Turbo Code for OFDM Systems

    Masayuki HOSHINO  Mitsuru UESUGI  Takeo OHGANE  Yasutaka OGAWA  Toshihiko NISHIMURA  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3476-3482

    Space-Time Turbo code is an effective method for the enhancement of link capacity and maximizing the link-budget by balancing the coding gain obtained via Turbo codes and the diversity gain obtained through multiple antenna transmission. A study on an antenna selection scheme for Space-Time Turbo code for OFDM systems is presented in this paper. In the proposed method, the systematic bits and the punctured parity bits are sent from the selected antenna for each sub-carrier, while data transmission is suspended from the antenna experiencing poor channel conditions at the receiver. Simulation results show that the proposed method yields a 2.2 dB gain in the required TxEb/N0 relative to the conventional method, and makes the channel estimation accuracy more robust. Moreover, the proposed method reduces transmission power by about 4 dB compared to the conventional method.

  • An Algorithm to Use in Adaptive Wideband Duplexer for Software Radio

    Shyama KANNANGARA  Michael FAULKNER  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3452-3455

    This paper proposes a new algorithm to control an adaptive duplexer for multiband software radio. It uses a wideband low isolation device combined with a two-tap/two-loop adjustable canceller to eliminate the need for multiple switched high isolation duplexers. The taps are adjusted to provide isolation peaks in the transmit and receive bands. The algorithm is based on the superposition of squared errors and achieved 66 dB isolation of the transmit signal and a 37 dB cancellation of the transmitter noise in the receiver band.

  • A New Flexible Symbol-Timing Synchronization Method for Multi-Mode Software Radio Technology

    Hiroshi HARADA  Hiroki NAKAMURA  Tetsushi IKEGAMI  Masayuki FUJISE  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3521-3529

    A flexible symbol-timing synchronization met-hod is a one that uses a common sampling clock to find synchronization points for radio communication systems that have different symbol rates. This method estimates synchronization points from state patterns calculated using the symbol rate, sampling clock, and number of observed symbols. Decreasing the number of state patterns is one of best ways to reduce the amount of device resources needed to store the patterns. In this paper, we propose a new pattern generation method in which the number of generated patterns does not increase when the sampling clocks of the communications systems are different. To show the feasibility of this method for symbol-timing synchronization, we analyzed a relationship between the number of samples and the number of state patterns and calculated the BER (bit error rate) in AWGN (additive white Gaussian noise) and one-path flat Rayleigh fading environments by computer simulation.

  • Mathematical Modeling of the Software Radio Design Problem

    Arnd-Ragnar RHIEMEIER  Friedrich JONDRAL  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3456-3467

    Software Radio has been proposed in the 1990s as the solution to flexible transceiver design for future wireless systems. Potential advantages and drawbacks of this approach have been described and analysed in verbose format in many articles. However, a mathematical perspective of the software radio design problem is to be found in the literature only once. Despite this attempt to develop a sound formal description the conclusions do not reach beyond algorithm design. Open issues in system design are often mentioned, but remain unresolved hitherto. We develop a novel mathematical perspective of software radio, and we formulate the design problem accordingly, by means of an integer linear programming (ILP) representation. This type of problem is well-known in computer science and operations research, but it has never been linked to software radio design before. In a first approach to solve the ILP problem we reduce it to a scheduling problem with processor constraints. In the remainder of the theoretical section we introduce the notions of granularity G and speedup s to assess the quality of modular implementations. A random runtime argument leads the way to a system-theoretic approach to modular design issues such as maximizing speedup over a great number of different implementations. For the special case G = 1 we deduce the speedup potential of a primitive graph in analytical form. In the experimental section we compare simulation results to our theory, and we extend the experiments to a more complicated graph which stems from a real software radio design project. The paper concludes with a discussion and a brief outlook to future research issues.

  • CGM: A Multicast Routing Protocol for Mobile Ad-Hoc Networks

    Chunhung Richard LIN  Ming-Jyun SIA  Yi-Siang HUANG  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E86-B No:12
      Page(s):
    3569-3579

    We propose a new protocol, Clustered Group Multicast (CGM), for multicasting in ad-hoc mobile networks. In CGM, there is a set of forwarding nodes (called multicast backbone) which are responsible for forwarding multicast datagrams. Unlike the multicasting protocols in wired networks (e.g., Internet) which construct and maintain a shortest path tree for every multicast {source, group} pair, CGM is a mesh-based multicasting protocol in which the connectivity among the nodes in the backbone is of no longer importance. Thus, there is no tree maintenance overhead, but there are more connectivity than trees and yet it can prevent long-term or permanent routing loops from occurring. A key feature of CGM is the use of the advertising agent to reduce advertising traffic to the system. An advertising agent acts as both a server and a client for the purpose of advertising join requests on behalf of its local clients. Because in CGM multicast traffic is only allowed to be delivered over the backbone, CGM restricts the amount of hosts participating in the backbone to decrease the impact of multicast traffic to the system. From the simulation results, the multicast group management traffic and multicast datagram traffic are much less than the other protocols. This is particularly important for wireless networks which lacks bandwidth.

  • Technical Regulation Conformity Evaluation System for Software Defined Radio

    Yasuo SUZUKI  Koji ODA  Ryoichi HIDAKA  Hiroshi HARADA  Tatsuaki HAMAI  Tokihiko YOKOI  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3392-3400

    Interest in the regulatory issues for Software Defined Radio (SDR) is spreading worldwide since the Federal Communications Commission (FCC) recently recognized SDR and created a new category for SDR authorization. SDR technology will bring enormous benefits to the field of wireless services. However, in order to ensure such benefits, revisions of the radio law and/or related ordinances are required regardless of standardization of the software downloading and other implementation details. In order to define the issues peculiar to SDR and to investigate how conformity evaluation should be conducted for radio equipments whose RF characteristics can be altered by software changes in the field, "Study Group on Software Technology for Radio Equipment" was organized by the Telecom Engineering Center (TELEC) in 2000. This paper summarizes a report of the Study Group that was published in March 2003 including the proposal for "Technical regulation conformity evaluation system," the principal output of the study, which proposes how to prevent unauthorized changes to radio equipment in the field.

  • Consideration of Fault Tolerance in Autonomic Computing Environment

    Yoshihiro TOHMA  

     
    INVITED PAPER

      Vol:
    E86-D No:12
      Page(s):
    2503-2507

    Since the characteristic to current information systems is the dynamic and concurrent change of their configurations and scales with non-stop provision of their services, the system management should inevitably rely on autonomic computing. Since fault tolerance is the one of important system management issues, it should also be incorporated in autonomic computing environment. This paper argues what should be taken into consideration and what approach could be available to realize the fault tolerance in such environments.

  • Complex Form Bandpass Sampling with Offset Frequency Sampling and Quadrature Component Interpolation for Modulated Signals

    Norihiro SATO  Hiroshi SUZUKI  Satoshi SUYAMA  Kazuhiko FUKAWA  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3513-3520

    This paper proposes complex form BandPass Sampling (BPS) that is suitable for the software radio. This BPS utilizes offset frequency sampling and quadrature component interpolation. Three types of BPS techniques are first reviewed, which shows effectiveness of the proposed BPS technique. The major advantages over the conventional BPS techniques are: i) free from the DC offset that is caused by the leak of the sampling clock harmonics into the received signal, and ii) reduction of alias by the complex number processing in the signal detection. Next, detailed description of the BPS operation shows that it requires real-time interpolation for the time alignment of the sampled quadrature component. Finally, computer simulation shows that the misalignment generates distortion, and that effective interpolation techniques can reduce the distortion level less than -60 dB even for wideband signals.

  • A Dynamically Adaptive Hardware on Dynamically Reconfigurable Processor

    Hideharu AMANO  Akiya JOURAKU  Kenichiro ANJO  

     
    INVITED PAPER

      Vol:
    E86-B No:12
      Page(s):
    3385-3391

    A framework of dynamically adaptive hardware mechanism on multicontext reconfigurable devices is proposed, and as an example, an adaptive switching fabric is implemented on NEC's novel reconfigurable device DRP (Dynamically Reconfigurable Processor). In this switch, contexts for the full crossbar and alternative hadware modules, which provide larger bandwidth but can treat only a limited pattern of packet inputs, are prepared. Using the quick context switching functionality, a context for the full crossbar is replaced by alternative contexts according to the packet inputs pattern. If the context corresponding to requested alternative hadware modules is not inside the chip, it is loaded from outside chip to currently unused context memory, then replaced with the full size crossbar. If the traffic includes a lot of packets for specific destinations, a set of contexts frequently used in the traffic is gathered inside the chip like a working set stored in a cache. 4 4 mesh network connected with the proposed adaptive switches is simulated, and it appears that the latency between nodes is improved three times when the traffic between neighboring four nodes is dominant.

  • A C-Ku Band 5-Bit MMIC Phase Shifter Using Optimized Reflective Series/Parallel LC Circuits

    Kenichi MIYAGUCHI  Morishige HIEDA  Yukinobu TARUI  Mikio HATAMOTO  Koh KANAYA  Yoshitada IYAMA  Tadashi TAKAGI  Osami ISHIDA  

     
    PAPER-Active(Phase Shifter)

      Vol:
    E86-C No:12
      Page(s):
    2429-2436

    A C-Ku band 5-bit MMIC phase shifter using optimized reflective series/parallel LC circuits is presented. The proposed circuit has frequency independent characteristics in the case of 180 phase shift, ideally. Also, an ultra-broad-band circuit design theory for the 180 optimized reflective circuit has derived, which gives optimum characteristics compromising between loss and phase shift error. The fabricated 5-bit MMIC phase shifter with SPDT switch has successfully demonstrated a typical insertion loss of 9.4 dB 1.4 dB, and a maximum RMS phase shift error of 7 over the 6 to 18 GHz band. The measured results validate the proposed design theory of the phase shifter.

  • The Overview of the New Generation Mobile Communication System and the Role of Software Defined Radio Technology

    Hiroshi HARADA  Masahiro KURODA  Hiroyuki MORIKAWA  Hiromitsu WAKANA  Fumiyuki ADACHI  

     
    INVITED PAPER

      Vol:
    E86-B No:12
      Page(s):
    3374-3384

    The Communications Research Laboratory (CRL) started a new project named the New Generation Mobile Network Project in April 2002. The target of this project is the development of new technologies to enable seamless and secure integration of various wireless access networks such as 3rd and 4th generation cellular, wireless LAN, high-speed mobile wireless, wired communications, and broadcasting networks. This paper presents an overview of CRL's new generation mobile communication system that is called The Multimedia Integrated Network by Radio Access Innovation Plus (MIRAI+), as well as details the role of Software Radio Technology (SDR) in MIRAI+.

  • Translation for Constraint Descriptions into a Colored Petri Net to Analyze Object Migration Behavior

    Hideki SATO  

     
    PAPER-Databases

      Vol:
    E86-D No:12
      Page(s):
    2731-2742

    In databases based on a multi-aspects object data model whcih enables multiple aspects of a real-world entity to be represented and to be acquired/lost dynamically, Object Migration (OM) updating membership relationships between an object and classes occurs, as the properties of the object evolve in its lifetime. We have proposed an OM behavior modeling framework using Colored Petri Nets (CPN) to analyze OM behavior. Based on the proposed framework, this paper presents a technique for constructing OM behavior models from OM constraint descriptions and class schemas as its input. The presented technique makes it easy to construct consistent and complete OM behavior models, since OM constraints are described in a simple, modular, and declarative form.

  • Realization of Low Spurious Responses by Various Bandpass Filters Using Open-Ended λ/2 Resonators

    Kouji WADA  Takanobu OHNO  Kouichi NAKAGAWA  Osamu HASHIMOTO  

     
    PAPER-Passive(Filter)

      Vol:
    E86-C No:12
      Page(s):
    2394-2402

    This paper focuses on the realization of low spurious responses by various bandpass filters (BPFs) using open-ended λ/2 resonators. The first part of this paper gives the resonance characteristics of the open-ended λ/2 resonators when the excitation methods are chosen. Secondly, various BPFs obtained with our methodology are provided. For constructing the BPF, (1) point-coupled resonators, (2) comb-line resonators, (3) quasi comb-line resonators and (4) parallel-coupled resonators are used. It is verified that the presented BPFs can be used to obtain low spurious responses both theoretically and experimentally.

  • Analyzing the Impact of Data Errors in Safety-Critical Control Systems

    Orjan ASKERDAL  Magnus GAFVERT  Martin HILLER  Neeraj SURI  

     
    PAPER-Verification and Dependability Analysis

      Vol:
    E86-D No:12
      Page(s):
    2623-2633

    Computers are increasingly used for implementing control algorithms in safety-critical embedded applications, such as engine control, braking control and flight surface control. Consequently, computer errors can have severe impact on the safety of such systems. Addressing the coupling of control performance with computer related errors, this paper develops a methodology for analyzing the impacts data errors have on control system dependability. The impact of a data error is measured as the resulting control error. We use maximum bounds on this measure as the criterion for control system failure (i.e., if the control error exceeds a certain threshold, the system has failed). In this paper we a) develop suitable models of computer faults for analysis of control level effects and related analysis methods, and b) apply traditional control theory analysis methods for understanding the impacts of data errors on system dependability. An automobile slip-control brake-system is used as an example showing the viability of our approach.

  • Implementation of Java Accelerator for High-Performance Embedded Systems

    Motoki KIMURA  Morgan Hirosuke MIKI  Takao ONOYE  Isao SHIRAKAWA  

     
    PAPER-Simulation Accelerator

      Vol:
    E86-A No:12
      Page(s):
    3079-3088

    A Java execution environment is implemented, in which a hardware engine is operated in parallel with an embedded processor. This pair of hardware facilities together with an additional software kernel are devised for existing embedded systems, so as to execute Java applications more efficiently in such a way that 39 instructions are added to the original Java Virtual Machine to implement the software kernel. The exploration of design parameters is also attempted to attain a low hardware cost and high performance. The proposed hardware engine of a 6-stage pipeline can be integrated in a single chip using 30 k gates together with the instruction and data cache memories. The proposed approach improves the execution speed by a factor of 5 in comparison with the J2ME software implementation.

  • Parasitic Capacitance Modeling for Non-Planar Interconnects in Liquid Crystal Displays

    Sadahiro TANI  Yoshihiro UCHIDA  Makoto FURUIE  Shuji TSUKIYAMA  BuYeol LEE  Shuji NISHI  Yasushi KUBOTA  Isao SHIRAKAWA  Shigeki IMAI  

     
    PAPER-Parasitics and Noise

      Vol:
    E86-A No:12
      Page(s):
    2923-2932

    The problem of calculating parasitic capacitances between two interconnects is investigated dedicatedly for liquid crystal displays, with the main focus put on the approximate expressions of the capacitances caused at the intersection and the parallel running of two interconnects. To derive simple and accurate approximate expressions, the interconnects in these structures are divided into a few basic coupling regions in such a way that the electro-magnetic field in each region can be calculated by a 2-D capacitance model. Then the capacitance in such a region is represented by a simple expression adjusted to the results computed by an electro-magnetic field solver. The total capacitance obtained by summing the capacitances in all regions is evaluated in comparison with the one obtained by using a 3-D field solver, resulting in a relative error of less than 5%.

  • Pattern-Size-Free Planarization for Multilayered Large-Scale SFQ Circuits

    Kenji HINODE  Shuichi NAGASAWA  Masao SUGITA  Tetsuro SATOH  Hiroyuki AKAIKE  Yoshihiro KITAGAWA  Mutsuo HIDAKA  

     
    LETTER-Superconductive Electronics

      Vol:
    E86-C No:12
      Page(s):
    2511-2513

    We have developed a planarization method applicable to large-scale superconductive Nb device fabrication. A planarized multi-layer wiring structure is obtained independently of the wiring size (width, length, and density) by combining three steps for fabricating an SiO2 insulator layer: bias-sputtering, chemical mechanical polishing, and etching with a reversal mask. Fabricated three-level wiring structures, consisting of 200- or 300-nm-thick Nb and SiO2 layers, had excellent layer flatness, and the leakage current (< 0.1 µA/cm2) between the Nb layers was sufficiently low. Two hundred chains of stepwise and stacked contacts yielded a sufficiently large critical current, typically more than 10 mA at 4.2 K.

20741-20760hit(30728hit)