The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

25381-25400hit(30728hit)

  • Performance Analysis of a Profile Management Scheme for Incall Registration/Deregistration in Wireline UPT Networks--Part I: Request-Based Scheme

    Min Young CHUNG  Dan Keun SUNG  

     
    PAPER-Communication Networks and Services

      Vol:
    E82-B No:5
      Page(s):
    686-694

    In universal personal telecommunication (UPT) environments, UPT networks retain information related to incall/outcall registration in UPT user service profiles in order to provide incoming UPT calls for UPT users in any location who have registered at a terminal. As UPT networks support incall registration, terminal users can be different from terminal owners, and several UPT users can register for incoming calls on a single terminal. Therefore, appropriate third-party protection procedures are needed to protect the rights of terminal owners. A terminal profile database can be used to store information regarding terminal states and incall UPT users registered on a terminal in order to enable third-party protection procedures. In order to manage information within both the terminal profile and the service profile, we propose a request-based scheme for incall registration/deregistration of UPT users and incall registration resets of terminal owners. We evaluate the performance of the scheme in terms of; 1) total cost and, 2) the number of terminal profile accesses per unit time for a terminal.

  • Time-Division Multiplexing Realizations of Multiple-Output Functions Based on Shared Multi-Terminal Multiple-Valued Decision Diagrams

    Hafiz Md. HASAN BABU  Tsutomu SASAO  

     
    PAPER-Logic Design

      Vol:
    E82-D No:5
      Page(s):
    925-932

    This paper considers methods to design multiple-output networks based on decision diagrams (DDs). TDM (time-division multiplexing) systems transmit several signals on a single line. These methods reduce: 1) hardware; 2) logic levels; and 3) pins. In the TDM realizations, we consider three types of DDs: shared binary decision digrams (SBDDs), shared multiple-valued decision diagrams (SMDDs), and shared multi-terminal multiple-valued decision diagrams (SMTMDDs). In the network, each non-terminal node of a DD is realized by a multiplexer (MUX). We propose heuristic algorithms to derive SMTMDDs from SBDDs. We compare the number of non-terminal nodes in SBDDs, SMDDs, and SMTMDDs. For nrm n, log n, and for many other benchmark functions, SMTMDD-based realizations are more economical than other ones, where nrm n is a (2n)-input (n1)-output function computing (X2+Y2)+0.5, log n is an n-input n-output function computing (2n1)log(x1)/nlog2, and a denotes the largest integer not greater than a.

  • A Novel Distortion Compensation Technique Using an Active Inductor

    Hitoshi HAYASHI  Masahiro MURAGUCHI  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    687-691

    This paper presents a novel distortion compensation technique using an active inductor. First, we describe the input-reflection-coefficient characteristics of a GaAs MESFET active inductor when input power increases. We show that the inductor exhibits positive amplitude deviation and negative/positive phase deviation as the input power increases when the biases of the FETs are set appropriately. The chip size of the fabricated active inductor is less than 0.52 mm2. Then, we show that third-order intermodulation is improved when the active inductor is used as a predistortion linearizer. Third-order intermodulation was improved over the output range from 14 dBm to 25 dBm, and at the output of 15 dBm, third-order intermodulation was improved approximately by 9 dB when the predistortion linearizer was introduced. The active inductor can thus function as a miniaturized predistortion linearizer by using it in the input matching circuit of a power amplifier. This technique can be applied in the miniaturization of wireless communication devices.

  • Harmonic Feedback Circuit Effects on Intermodulation Products and Adjacent Channel Leakage Power in HBT Power Amplifier for 1. 95 GHz Wide-Band CDMA Cellular Phones

    Kazukiyo JOSHIN  Yasuhiro NAKASHA  Taisuke IWAI  Takumi MIYASHITA  Shiro OHARA  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    725-729

    Second harmonic signal feedback technique is applied to an HBT power amplifier for Wide-band CDMA (W-CDMA) mobile communication system to improve its linearity and efficiency. This paper describes the feedback effect of the 2nd harmonic signal from the output of the amplifier to the input on the 3rd order intermodulation distortion (IMD) products and Adjacent Channel leakage Power (ACP) of the power amplifier. The feedback amplifier, using an InGaP/GaAs HBT with 48 fingers of 3 20 µ m emitter, exhibits a 10 dB reduction in the level of the 3rd order IMD products. In addition, an ACP improvement of 7 dB for the QPSK modulation signal with a chip rate of 4.096 Mcps at 1.95 GHz was realized. As a result, the amplifier achieves a power-added efficiency of 41.5%, gain of 15.3 dB, and ACP of 43.0 dBc at a 5 MHz offset frequency and output power of 27.5 dBm. At the output power of 28 dBm, the power-added efficiency increases to 43.3% with an ACP of 40.8 dBc.

  • The Error Estimation of Sampling in Wavelet Subspaces

    Wen CHEN  Jie CHEN  Shuichi ITOH  

     
    PAPER-Digital Signal Processing

      Vol:
    E82-A No:5
      Page(s):
    835-841

    Following our former works on regular sampling in wavelet subspaces, the paper provides two algorithms to estimate the truncation error and aliasing error respectively when the theorem is applied to calculate concrete signals. Furthermore the shift sampling case is also discussed. Finally some important examples are calculated to show the algorithm.

  • Improvement to a Method of Embedding Robust Watermarks into Digital Color Images

    Akira SHIOZAKI  

     
    LETTER-Information Security

      Vol:
    E82-A No:5
      Page(s):
    861-864

    This letter proposes improvement to the previously presented watermarking method which spreads an ID pattern with a random sequence and embeds it throughout the spatial domain of an image. The proposed method can extract embedded watermarks without an original image even from images converted by brightness/contrast conversion, edge-enhancement, posterization and JPEG compression.

  • Generation of Minimal Separating Sets of a Graph

    Jiro HAYAKAWA  Shuji TSUKIYAMA  Hiromu ARIYOSHI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    775-783

    For given undirected graph G[V,E] and vertices s and t, a minimal s-t separating set denoted by Ec & Vc is a minimal set of elements (edges and/or vertices) such that deletion of the elements from G breaks all the paths between s and t, where Ec and Vc are sets of edges and vertices, respectively. In this paper, we consider a problem of generating all minimal s-t separating sets, and show that the problem can be solved in O(µ(mt(n,n))) time, where m|E|, n|V|, µ is the number of minimal s-t separating sets of G, and t(p,q) is the time needed for finding q lowest common ancestors for q pairs of vertices in a rooted tree with p vertices. Since t(n,n) can be O(n), we can generate all minimal s-t separating in linear time per s-t separating set. However, the linear time algorithm for finding the lowest common ancestors is complicated, so that it is not efficient for a moderate size graph. Therefore, we use an O(nα (n))-time algorithm for finding the lowest common ancestors, and propose an algorithm to generate all minimal s-t separating sets in O(mnα(n)) time per s-t separating set, where α(n) is the pseudo-inverse of Ackermann function.

  • A Hierarchical Block Matching Algorithm Using Selective Elimination of Candidate Motion Vectors

    Ji-Hong KIM  Woo-Jin SONG  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:5
      Page(s):
    985-992

    In this paper, a new hierarchical block matching algorithm using mean and difference pyramids is presented. The detection of motion vectors at each level of the pyramid is accomplished by selectively eliminating the candidate motion vectors that cannot provide the best match at the next lower level. The remaining motion vectors at each level are propagated and used as the initial motion vectors at the next lower level. Therefore, the possibility of falling into local minima can be significantly reduced. The simulation results show that the proposed method has excellent performance with reduced computational complexity.

  • Highly Nonlinear Vector Boolean Functions

    Takashi SATOH  Kaoru KUROSAWA  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    807-814

    In this paper we study n-input m-output Boolean functions (abbr. (n,m)-functions) with high nonlinearity. First, we present a basic construction method for a balanced (n,m)-function based on a primitive element in GF(2m). With an iterative procedure, we improve some lower bounds of the maximum nonlinearity of balanced (n,m)-functions. The resulting bounds are larger than the maximum nonlinearity achieved by any previous construction method for (n,m)-functions. Finally, our basic method is developed to construct an (n,m)-bent function and discuss its maximum algebraic degree.

  • Efficient Computation of the Characteristic Polynomial of a Polynomial Matrix

    Takuya KITAMOTO  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E82-A No:5
      Page(s):
    842-848

    This paper presents an efficient algorithm to compute the characteristic polynomial of a polynomial matrix. We impose the following condition on given polynomial matrix M. Let M0 be the constant part of M, i. e. M0 M ( mod (y,,z)), where y,,z are indeterminates in M. Then, all eigenvalues of M0 must be distinct. In this case, the minimal polynomial of M and the characteristic polynomial of M agree, i. e. the characteristic polynomial f(x,y,,z) | x E M | is the minimal degree (w. r. t. x) polynomial satisfying f(M,y,,z) 0. We use this fact to compute f(x,y,,z). More concretely, we determine the coefficients of f(x,y,,z) little by little with basic matrix operations, which makes the algorithm quite efficient. Numerical experiments are given to compare the algorithm with conventional ones.

  • Analysis of Erlang Capacity for the Multimedia DS-CDMA Systems

    Insoo KOO  JeeHwan AHN  Jeong-A LEE  Kiseon KIM  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E82-A No:5
      Page(s):
    849-855

    In this paper, we focus on the evaluation of the Erlang capacity for multimedia DS-CDMA systems supporting the multi-class services with different transmission rates, bit error rates, traffic activity factors in the reverse link. The number of concurrent users of the corresponding service group is modeled as a K-dimension Markov chain. Then, the Erlang capacity for the multimedia system can be found based on a K-dimension M/M/m loss system. For an IS-95 type DS-CDMA system, supporting voice/data services, the capacity bounds are depicted in conjunction with the 2-dimensional Markov chain. Furthermore, it is observed that the Erlang capacity with respect to the each service group should be balanced to enhance the total system Erlang capacity. Finally, the channel reservation scheme is considered to increase the total system Erlang capacity.

  • The Evaluations on Lower Bounds of All-Terminal Reliability by Arc-Packings for General Networks

    Takeshi KOIDE  Shuichi SHINMORI  Hiroaki ISHII  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    784-791

    All-terminal reliability is one of the measurements to evaluate the reliability for network systems. Since it may need exponential time of the network size to compute the exact value of all-terminal reliability, it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. Ramanathan and Colbourn have proposed approaches for lower bounds of all-terminal reliability by using arc-packings but their approaches are not detailed enough to construct concrete algorithms and they have just evaluated their approaches for a particular network. In this paper, we construct concrete algorithms based on their approaches and suggest new algorithms. We also execute computational experiments for general networks in order to evaluate the lower bounds by the algorithms and show the effectiveness of our new algorithms.

  • A 1-V, 1-Vp-p Input Range, Four-Quadrant Analog Multiplier Using Neuron-MOS Transistors

    Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Electronic Circuits

      Vol:
    E82-C No:5
      Page(s):
    750-757

    In this paper, a four-quadrant analog multiplier consisting of four neuron-MOS transistors and two load resistors is proposed. The proposed multiplier can be operated at only 1 V. Furthermore, the input range of the multiplier is equal to 100% of the supply voltage. The theoretical harmonic distortion caused by mobility degradation and device mismatchs is derived in detail. The performance of the proposed multiplier is characterized through HSPICE simulations with a standard 2.0 µm CMOS process with a double-poly layer. Simulations of the proposed multiplier demonstrate that the linearity error of 0.77% and a total harmonic distortion of 0.62% are obtained with full-scale input conditions. The maximum power consumption and 3 dB bandwidth are 9.56 µW and 107 MHz, respectively. The active area of the proposed multiplier is 210 µm 140 µm.

  • Minimum Cut Linear Arrangement of p-q Dags for VLSI Layout of Adder Trees

    Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    767-774

    Two algorithms for minimum cut linear arrangement of a class of graphs called p-q dags are proposed. A p-q dag represents the connection scheme of an adder tree, such as Wallace tree, and the VLSI layout problem of a bit slice of an adder tree is treated as the minimum cut linear arrangement problem of its corresponding p-q dag. One of the two algorithms is based on dynamic programming. It calculates an exact minimum solution within nO(1) time and space, where n is the size of a given graph. The other algorithm is an approximation algorithm which calculates a solution with O(log n) cutwidth. It requires O(n log n) time.

  • Optimal Time Broadcasting Schemes in Faulty Star Graphs

    Aohan MEI  Feng BAO  Yukihiro HAMADA  Yoshihide IGARASHI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    722-732

    We propose two fault-tolerant broadcasting schemes in star graphs. One of the schemes can tolerate up to n2 faults of the crash type in the n-star graph. The other scheme can tolerate up to (n3d1)/2 faults of the Byzantine type in the n-star graph, where d is the smallest positive integer satisfying nd!. Each of the schemes is designed for the single-port mode, and it completes the broadcasting in O(n log n) time. These schemes are time optimal. For the former scheme we analyze the reliability in the case where faults of the crash type are randomly distributed. It can tolerate (n!)α faults randomly distributed in the n-star graph with a high probability, where α is any constant less than 1.

  • Alternating Rebound Turing Machines

    Lan ZHANG  Jianliang XU  Katsushi INOUE  Akira ITO  Yue WANG  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    745-755

    This paper introduces an alternating rebound Turing machine and investigates some fundamental properties of it. Let DRTM (NRTM,ARTM) denote a deterministic (nondeterministic and alternating) rebound Turing machine, and URTM denote an ARTM with only universal states. We first investigate a relationship between the accepting powers of rebound machines and ordinary machines, and show, for example, that (1) there exists a language accepted by a deterministic rebound automaton, but not accepted by any o(log n) space-bounded alternating Turing machine, (2) alternating rebound automata are equivalent to two-way alternating counter automata, and (3) deterministic rebound counter automata are more powerful than two-way deterministic counter automata. We next investigate a relationship among the accepting powers of DRTM's, NRTM's, URTM's and ARTM's, and show that there exists a language accepted by alternating rebound automata, but not accepted by any o(logn) space-bounded NRTM (URTM). Then we show that there exists an infinite space hierarchy for DRTM's (NRTM's, URTM's) with spaces below log n. Furthermore, we investigate a relationship between the strong and weak modes of space complexity, and finally show that the classes of languages accepted by o(logn) space-bounded DRTM's (NRTM's, URTM's) are not closed under concatenation and Kleene .

  • Evolutionary Design of Arithmetic Circuits

    Takafumi AOKI  Naofumi HOMMA  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    798-806

    This paper presents a new approach to designing arithmetic circuits by using a graph-based evolutionary optimization technique called Evolutionary Graph Generation (EGG). The key idea of the proposed method is to introduce a higher level of abstraction for arithmetic algorithms, in which arithmetic circuit structures are modeled as data-flow graphs associated with specific number representation systems. The EGG system employs evolutionary operations to transform the structure of graphs directly, which makes it possible to generate the desired circuit structure efficiently. The potential capability of EGG is demonstrated through an experiment of generating constant-coefficient multipliers.

  • Intelligent Controller Using CMACs with Self-Organized Structure and Its Application for a Process System

    Toru YAMAMOTO  Masahiro KANEDA  

     
    LETTER-Systems and Control

      Vol:
    E82-A No:5
      Page(s):
    856-860

    Cerebellar Model Articulation Controller (CMAC) has been proposed as one of artificial neural networks. This paper describes a design scheme of intelligent control system consists of some CMACs. Each of CMACs is trained for the specified reference signal. A new CMAC is generated for unspecified reference signals, and the CMAC whose reference signal is nearest for the new reference signal, is eliminated. Therefore, since the reference signals are removed from the input signals of the CMAC, the proposed intelligent controller can be designed with fairly small memories.

  • An Efficient ARQ Scheme for Multi-Carrier Modulation Systems Based on Packet Combining

    Hiroyuki ATARASHI  Masao NAKAGAWA  

     
    PAPER-Mobile Communication

      Vol:
    E82-B No:5
      Page(s):
    731-739

    An efficient ARQ scheme based on the packet combining technique is investigated for multi-carrier modulation systems. In multi-carrier modulation systems, several sub-carriers are used for high data rate transmission and their individual received signal quality becomes different from one sub-carrier to others in a frequency selective fading channel. Therefore by changing the assignment of data to the sub-carriers in the retransmission packets, the distortion between the previous transmitted packet and the newly retransmitted one will be different. This is the principle of the proposed adaptive data order rearrangement for a packet combining ARQ scheme, which can achieve more diversity gain in packet combining and improve the ARQ performance. From the results of the theoretical analysis and the computer simulation, it is confirmed that the proposed packet combining ARQ with the proposed operation can achieve the better performance in terms of the average packet transmission success probability. In addition, this proposed scheme is also compared with the conventional multi-carrier modulation ARQ scheme based on the partial retransmission of a packet. The computer simulation results demonstrate that the proposed scheme has also advantage against the latter one, and it is considered to be as a more efficient ARQ scheme for multi-carrier modulation systems.

  • On Complexity of Computing the Permanent of a Rectangular Matrix

    Tsutomu KAWABATA  Jun TARUI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    741-744

    We show that the permanent of an m n rectangular matrix can be computed with O(n 2m 3m) multiplications and additions. Asymptotically, this is better than straightforward extensions of the best known algorithms for the permanent of a square matrix when m/n log3 2 and n .

25381-25400hit(30728hit)