The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

25401-25420hit(30728hit)

  • Efficient Computation of the Characteristic Polynomial of a Polynomial Matrix

    Takuya KITAMOTO  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E82-A No:5
      Page(s):
    842-848

    This paper presents an efficient algorithm to compute the characteristic polynomial of a polynomial matrix. We impose the following condition on given polynomial matrix M. Let M0 be the constant part of M, i. e. M0 M ( mod (y,,z)), where y,,z are indeterminates in M. Then, all eigenvalues of M0 must be distinct. In this case, the minimal polynomial of M and the characteristic polynomial of M agree, i. e. the characteristic polynomial f(x,y,,z) | x E M | is the minimal degree (w. r. t. x) polynomial satisfying f(M,y,,z) 0. We use this fact to compute f(x,y,,z). More concretely, we determine the coefficients of f(x,y,,z) little by little with basic matrix operations, which makes the algorithm quite efficient. Numerical experiments are given to compare the algorithm with conventional ones.

  • Nonlinear Compensation Technologies for Microwave Power Amplifiers in Radio Communication Systems

    Toshio NOJIMA  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    679-686

    Technologies used to characterize and compensate nonlinearities in microwave power amplifiers are discussed. First, a complex power series representation that allows both amplitude and phase nonlinearities to be dealt with simultaneously is proposed, and in order to estimate the 3rd-order complex coefficient phase of practical amplifiers, two kinds of experimental measurement methods are proposed. Next, the fundamental circuit configuration of IF cuber predistortion linearizer that compensates 3rd-order intermodulation distortion is derived from a nonlinear analysis using complex power series representation. Two practical cuber predistorters for the 6-GHz TWTA and the 800-MHz FET-PA are demonstrated. Moreover, the unique nonlinear compensation technology of side-band inversion is introduced for microwave relay system using TWTAs. Finally, the self-adjusting feed-forward (SAFF)-PA developed for digital cellular base stations is reviewed.

  • Distortion Characteristics of an Even Harmonic Type Direct Conversion Receiver for CDMA Satellite Communications

    Hiroshi IKEMATSU  Ken'ichi TAJIMA  Kenji KAWAKAMI  Kenji ITOH  Yoji ISOTA  Osami ISHIDA  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    699-707

    This paper describes the distortion characteristics of an even harmonic type direct converter (EH-DC) used in earth stations for CDMA satellite communications. Direct conversion technique is known as a method to simplify circuit topologies of microwave transceivers. In satellite communications, multi carriers which have high and nearly equal level are provided to a quadrature mixer of the EH-DC. Hence, the third-order intermodulation degrades receiving characteristics. In this paper, we show the relationship between the distortion characteristics and noise figure of the EH-DC for CDMA satellite communication systems. Furthermore, we show NPR of even harmonic quadrature mixers caused by the third-order intermodulation. Experimental results in X-band indicate that the proposed EH-DC has almost the same BER characteristics compared with a heterodyne type transceiver.

  • Improvement to a Method of Embedding Robust Watermarks into Digital Color Images

    Akira SHIOZAKI  

     
    LETTER-Information Security

      Vol:
    E82-A No:5
      Page(s):
    861-864

    This letter proposes improvement to the previously presented watermarking method which spreads an ID pattern with a random sequence and embeds it throughout the spatial domain of an image. The proposed method can extract embedded watermarks without an original image even from images converted by brightness/contrast conversion, edge-enhancement, posterization and JPEG compression.

  • Intermodulation Distortion of Low Noise Silicon BJT and MOSFET Fabricated in BiCMOS Process

    Noriharu SUEMATSU  Masayoshi ONO  Shunji KUBO  Mikio UESUGI  Kouichi HASEGAWA  Kenji HIROSHIGE  Yoshitada IYAMA  Tadashi TAKAGI  Osami ISHIDA  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    692-698

    Even though BiCMOS process has an ability to make both BJT and MOSFET on single-chip, only BJT has been used for BiCMOS Si-MMIC LNA because of its low noise and high gain performance under low d. c. supply power. But the distortion performance of BJT should be improved for the receiver applications in some wireless systems. In this paper, intermodulation distortion characteristics comparison is carried out between BJT and MOSFET fabricated in the same BiCMOS process by the analysis based on the simplified transistor models with extracted device parameters. The analytical result shows that MOSFET has lower intermodulation distortion characteristics compared with BJT, and the result is evaluated by the measurements. In order to obtain both low distortion and low noise characteristics, a two-stage Si-MMIC LNA is developed by using BJT as the 1st stage and MOSFET as the 2nd stage of LNA. The fabricated LNA performs NF of 2.45 dB, gain of 19.3 dB, IIP3 of14.6 dBm and OIP3 of 4.7 dBm under 3 V/7.2 mA d. c. supply power.

  • The Error Estimation of Sampling in Wavelet Subspaces

    Wen CHEN  Jie CHEN  Shuichi ITOH  

     
    PAPER-Digital Signal Processing

      Vol:
    E82-A No:5
      Page(s):
    835-841

    Following our former works on regular sampling in wavelet subspaces, the paper provides two algorithms to estimate the truncation error and aliasing error respectively when the theorem is applied to calculate concrete signals. Furthermore the shift sampling case is also discussed. Finally some important examples are calculated to show the algorithm.

  • Computational Investigations of All-Terminal Network Reliability via BDDs

    Hiroshi IMAI  Kyoko SEKINE  Keiko IMAI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    714-721

    This paper reports computational results of a new approach of analyzing network reliability against probabilistic link failures. This problem is hard to solve exactly when it is large-scale, which is shown from complexity theory, but the approach enables us to analyze networks of moderate size, as demonstrated by our experimental results. Furthermore, this approach yields a polynomial-time algorithm for complete graphs, whose reliability provides a natural upper bound for simple networks, and also leads to an efficient algorithm for computing the dominant part of the reliability function when the failure probability is sufficiently small. Computational results for these cases are also reported. This approach thus establishes a fundamental technology of analyzing network reliability in practice.

  • FVTD Analysis of Propagation of Radio Waves through Modified T-Junctions in Two-Dimensional Tunnel

    Kyung-Koo HAN  Kiyotoshi YASUMOTO  

     
    LETTER-Antennas and Propagation

      Vol:
    E82-B No:5
      Page(s):
    780-784

    Radio waves propagating through tunnels are strongly attenuated in the presence of discontinuities such as bends and branches. The useful structural modifications are requested to get better circumstances for radio waves in tunnels. In this paper, we propose several modifications arranged in a conventional T-junction of two-dimensional tunnels and analyze the transmission characteristics of radio waves by using the finite volume time domain (FVTD) method.

  • A Multicast Routing Method for Layered Streams

    Nagao OGINO  

     
    PAPER-Communication Networks and Services

      Vol:
    E82-B No:5
      Page(s):
    695-703

    In this paper, a new multicast routing method for layered streams is proposed. This method is an extension of the weighted greedy algorithm (WGA) and uses two kinds of weight values to refine the link distance. It can cope with dynamic change in the group members without multicast tree re-construction. The method is compatible with the RSVP and can be utilized in existing shared tree type routing protocols such as CBT and PIM sparse mode. The network resources can be utilized efficiently; furthermore, the loss rate of member's requests to receive more layers can be reduced by this routing method when a sufficient number of nodes have the packet filtering function and a sufficient number of hops is permitted.

  • Photorefractive Combining and Shaping Properties of Amplitude-Modulated Optical Signals by Two-Wave Mixing in Cu-KNSBN Crystal

    Joo-Uk UM  Kwon-Yeon LEE  Nam KIM  Han-Kyu PARK  Sang-Sam CHOI  

     
    PAPER-Opto-Electronics

      Vol:
    E82-C No:5
      Page(s):
    758-765

    We propose and describe a new configuration for splitting and combining operations of high-speed amplitude-modulated optical signals between the two interacting beams by using two-wave mixing in photorefractive Cu-doped (K0.5 Na0.5)0.2 (Sr0.61 Ba0.39)0.9 Nb2O6 (Cu-KNSBN) crystal. These operations are simultaneously achieved by changing the intensity ratio of the two incident beams. We also apply this scheme to a photorefractive pulse shaping in the time domain that consists of two amplitude-modulated beams that are coupled automatically through two-beam interactions in the crystal. Some preliminary experimental results are presented and discussed.

  • Harmonic Feedback Circuit Effects on Intermodulation Products and Adjacent Channel Leakage Power in HBT Power Amplifier for 1. 95 GHz Wide-Band CDMA Cellular Phones

    Kazukiyo JOSHIN  Yasuhiro NAKASHA  Taisuke IWAI  Takumi MIYASHITA  Shiro OHARA  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    725-729

    Second harmonic signal feedback technique is applied to an HBT power amplifier for Wide-band CDMA (W-CDMA) mobile communication system to improve its linearity and efficiency. This paper describes the feedback effect of the 2nd harmonic signal from the output of the amplifier to the input on the 3rd order intermodulation distortion (IMD) products and Adjacent Channel leakage Power (ACP) of the power amplifier. The feedback amplifier, using an InGaP/GaAs HBT with 48 fingers of 3 20 µ m emitter, exhibits a 10 dB reduction in the level of the 3rd order IMD products. In addition, an ACP improvement of 7 dB for the QPSK modulation signal with a chip rate of 4.096 Mcps at 1.95 GHz was realized. As a result, the amplifier achieves a power-added efficiency of 41.5%, gain of 15.3 dB, and ACP of 43.0 dBc at a 5 MHz offset frequency and output power of 27.5 dBm. At the output power of 28 dBm, the power-added efficiency increases to 43.3% with an ACP of 40.8 dBc.

  • On Complexity of Computing the Permanent of a Rectangular Matrix

    Tsutomu KAWABATA  Jun TARUI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    741-744

    We show that the permanent of an m n rectangular matrix can be computed with O(n 2m 3m) multiplications and additions. Asymptotically, this is better than straightforward extensions of the best known algorithms for the permanent of a square matrix when m/n log3 2 and n .

  • Neuron-MOS Current Mirror Circuit and Its Application to Multi-Valued Logic

    Jing SHEN  Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Circuits

      Vol:
    E82-D No:5
      Page(s):
    940-948

    A neuron-MOS transistor (νMOS) is applied to current-mode multi-valued logic (MVL) circuits. First, a novel low-voltage and low-power νMOS current mirror is presented. Then, a threshold detector and a quaternary T-gate using the proposed νMOS current mirrors are proposed. The minimum output voltage of the νMOS current mirror is decreased by VT (threshold voltage), compared with the conventional double cascode current mirror. The νMOS threshold detector is built on a νMOS current comparator originally composed of νMOS current mirrors. It has a high output swing and sharp transfer characteristics. The gradient of the proposed comparator output in the transfer region can be increased 6.3-fold compared with that in the conventional comparator. Along with improved operation of the novel current comparator, the discriminative ability of the proposed νMOS threshold detector is also increased. The performances of the proposed circuits are validated by HSPICE with Motorola 1.5 µm CMOS device parameters. Furthermore, the operation of a νMOS current mirror is also confirmed through experiments on test chips fabricated by VDEC*. The active area of the proposed νMOS current mirror is 63 µm 51 µm.

  • A Relationship between Two-Way Deterministic One-Counter Automata and One-Pebble Deterministic Turing Machines with Sublogarithmic Space

    Tokio OKAZAKI  Lan ZHANG  Katsushi INOUE  Akira ITO  Yue WANG  

     
    LETTER-Automata,Languages and Theory of Computing

      Vol:
    E82-D No:5
      Page(s):
    999-1004

    This paper investigates a relationship between accepting powers of two-way deterministic one-counter automata and one-pebble off-line deterministic Turing machines operating in space between loglog n and log n, and shows that they are incomparable.

  • Incompletely Specified Regular Ternary Logic Functions and Their Minimization

    Tomoyuki ARAKI  Masao MUKAIDONO  

     
    PAPER-Logic and Logic Functions

      Vol:
    E82-D No:5
      Page(s):
    910-918

    Regular ternary logic functions are one of the most useful special classes of Kleenean functions, and a lot of research has been done on them. However, there has been little work done on incompletely specified regular ternary logic functions. This paper describes the following points: (1) Minimization of incompletely specified regular ternary logic functions. (2) A new definition of incompletely specified fuzzy switching functions and their minimization. (Concretely speaking, minimal disjunctive forms of incompletely specified fuzzy switching functions are represented in formulas of regular ternary logic functions. ) (3) Their application to fuzzy logic circuits such as fuzzy PLAs of AND-OR type.

  • 10-GHz Operation of Multiple-Valued Quantizers Using Resonant-Tunneling Devices

    Toshihiro ITOH  Takao WAHO  Koichi MAEZAWA  Masafumi YAMAMOTO  

     
    PAPER-Circuits

      Vol:
    E82-D No:5
      Page(s):
    949-954

    We study ultrafast operation of multiple-valued quantizers composed of resonant-tunneling diodes (RTDs) and high electron mobility transistors (HEMTs). The operation principle of these quantizers is based on the monostable-multistable transition logic (MML) of series-connected RTDs. The quantizers are fabricated by monolithically integrating InP-based RTDs and 0.7-µm-gate-length HEMTs with a cutoff frequency of 40 GHz. To perform high-frequency experiments, an output buffer and termination resistors are attached to the quantizers, and the quantizers are designed to accommodate high-frequency input signals. Our experiments show that both ternary and quaternary quantizers can operate at clock frequencies of 10 GHz and at input frequencies of 3 GHz. This demonstrates the potential of applying RTD-based multiple-valued quantizers to high-frequency circuits.

  • Comparison of Logic Operators for Use in Multiple-Valued Sum-of-Products Expressions

    Takahiro HOZUMI  Osamu KAKUSHO  Yutaka HATA  

     
    PAPER-Logic Design

      Vol:
    E82-D No:5
      Page(s):
    933-939

    This paper shows the best operators for sum-of-products expressions. We first describe conditions of functions for product and sum operations. We examine all two-variable functions and select those that meet the conditions and then evaluate the number of product terms needed in the minimum sum-of-products expressions when each combination of selected product and sum functions is used. As a result of this, we obtain three product functions and nine sum functions on three-valued logic. We show that each of three product functions can express the same functions and MODSUM function is the most suitable for reduction of product terms. Moreover, we show that similar results are obtained on four-valued logic.

  • Efficient Triadic Generators for Logic Circuits

    Grant POGOSYAN  Takashi NAKAMURA  

     
    PAPER-Logic and Logic Functions

      Vol:
    E82-D No:5
      Page(s):
    919-924

    In practical logic design circuits are built by composing certain types of gates. Each gate itself is a simple circuits with one, two or three inputs and one output, which implements an elementary logic function. These functions are called the generators. For the general purpose the set of generators is considered to be functionally complete, i. e. , it is able to express any logic function under chosen rules compositions. A basis is a functionally complete set of logic functions that contains no complete proper subset. Providing compactness and expressibility of the generators the notion of a basis, however, ignores the optimality of implementations. Efficiently irreducible generating set, termed ε-basis, is an irreducible set of generators which guarantees an optimal implementation of every function, with respect to the number of literals in its formal expression. The notion of ε-basis is significant in the composition of functions, since the classical definition of basis does not consider the efficiency of implementation. In case of Boolean functions, for two-input (dyadic) generators it has been shown that an ε-basis consists of all monadic functions, constants, and only two dyadic functions from certain classes. In this paper, expanding the domain of basic operations from dyadic to triadic, we study the efficiency of sets of 3-input gates as generators. This expansion decreases the complexity of functions (hence, the complexity of functional circuits to be designed). Gaining an evident merit in the complexity, we have to pay a price by a considerable increase of the number of such generators for the multiple valued circuits. However, in the case of Boolean operations this number is still very small, and it will certainly be useful to consider this approach in the practical circuit design. This paper provides a criterion for a generating set of triadic operations of k-valued logic to be efficiently irreducible. In the case of Boolean functions it is shown that there exist exactly five types of classes of triadic operations which constitute an ε-basis. A typical example of generator set which forms a triadic ε-basis, is also shown.

  • Coterie for Generalized Mutual Exclusion Problem

    Shao Chin SUNG  Yoshifumi MANABE  

     
    PAPER-Computer Systems

      Vol:
    E82-D No:5
      Page(s):
    968-972

    This paper discusses the generalized mutual exclusion problem defined by H. Kakugawa and M. Yamashita. A set of processes shares a set of resources of an identical type. Each resource must be accessed by at most one process at any time. Each process may have different accessible resources. If two processes have no common accessible resource, it is reasonable to ensure a condition in resource allocation, which is called allocation independence in this paper, i. e. , resource allocation to those processes must be performed without any interference. In this paper, we define a new structure, sharing structure coterie. By using a sharing structure coterie, the resource allocation algorithm proposed by H. Kakugawa and M. Yamashita ensures the above condition. We show a necessary and sufficient condition of the existence of a sharing structure coterie. The decision of the existence of a sharing structure coterie for an arbitrary distributed system is NP-complete. Furthermore, we show a resource allocation algorithm which guarantees the above requirement for distributed systems whose sharing structure coteries do not exist or are difficult to obtain.

  • Noise Performance of Second-Order Bidirectional Associative Memory

    Yutaka KAWABATA  Yoshimasa DAIDO  Shimmi HATTORI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E82-D No:5
      Page(s):
    993-998

    This paper describes the error probability of the second order BAM estimated by a computer simulation and an analytical calculation method. The computer simulation suggests that the iterations to retrieve a library pattern almost converge within four times and the difference between once and twice is much larger than that between twice and four times. The error probability at the output of the second iteration is estimated by the analytical method. The effect of the noise bits is also estimated using the analytical method. The BAM with larger n is more robust for the noise. For example, the noise bits of 0.15n cause almost no degradation of the error probability when n is larger than 100. If the error probability of 10-4 is allowable, the capacity of the second order BAM can be increased by about 40% in the presence of 0.15n noise bits when n is larger than 500.

25401-25420hit(30728hit)