The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] coupling(268hit)

221-240hit(268hit)

  • Enhanced Resonance by Coupling and Summing in Sinusoidally Driven Chaotic Neural Networks

    Shin MIZUTANI  Takuya SANO  Katsunori SHIMOHARA  

     
    PAPER-Nonlinear Problems

      Vol:
    E82-A No:4
      Page(s):
    648-657

    Enhancement of resonance is shown by coupling and summing in sinusoidally driven chaotic neural networks. This resonance phenomenon has a peak at a drive frequency similar to noise-induced stochastic resonance (SR), however, the mechanism is different from noise-induced SR. We numerically study the properties of resonance in chaotic neural networks in the turbulent phase with summing and homogeneous coupling, with particular consideration of enhancement of the signal-to-noise ratio (SNR) by coupling and summing. Summing networks can enhance the SNR of a mean field based on the law of large numbers. Global coupling can enhance the SNR of a mean field and a neuron in the network. However, enhancement is not guaranteed and depends on the parameters. A combination of coupling and summing enhances the SNR, but summing to provide a mean field is more effective than coupling on a neuron level to promote the SNR. The global coupling network has a negative correlation between the SNR of the mean field and the Kolmogorov-Sinai (KS) entropy, and between the SNR of a neuron in the network and the KS entropy. This negative correlation is similar to the results of the driven single neuron model. The SNR is saturated as an increase in the drive amplitude, and further increases change the state into a nonchaotic one. The SNR is enhanced around a few frequencies and the dependence on frequency is clearer and smoother than the results of the driven single neuron model. Such dependence on the drive amplitude and frequency exhibits similarities to the results of the driven single neuron model. The nearest neighbor coupling network with a periodic or free boundary can also enhance the SNR of a neuron depending on the parameters. The network also has a negative correlation between the SNR of a neuron and the KS entropy whenever the boundary is periodic or free. The network with a free boundary does not have a significant effect on the SNR from both edges of the free boundaries.

  • Ribbon-Wire Interconnect Using Parasitic Element

    Hajime IZUMI  Hiroyuki ARAI  Tatsuo ITOH  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E82-C No:4
      Page(s):
    662-664

    This paper presents a contact-less connector using proximity coupling through a parasitic element. For example, proximity coupling is used for interconnect of microstrip lines for DC-break structure. We also present a cross wiring structure using this interconnect.

  • MCD Analysis for Coupling Characteristics of Multi-Section Coupled Transmission Lines

    Kazuhito MURAKAMI  Nobuo OKAMOTO  Yasumasa NOGUCHI  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E82-C No:4
      Page(s):
    665-669

    A simple simulation approach based on the modified central difference (MCD) method for analyzing the coupling characteristics of coupled transmission lines (CTL) is presented. Gaussian pulse responses on the sense line are demonstrated by graphical expressions. The frequency characteristics of the coupling factor is efficiently derived from the extracted input and output responses by using the fast Fourier transform (FFT) technique. It is shown that this approach is useful to analyze the coupling characteristics of symmetrical and asymmetric multi-section CTL.

  • A New Simple Method for Extracting the Capacitance Coupling Coefficients of Sub-0.5-µm Flash Memory Cells

    Keiichi HARAGUCHI  Hitoshi KUME  Masahiro USHIYAMA  Makoto OHKURA  

     
    PAPER

      Vol:
    E82-C No:4
      Page(s):
    602-606

    A new simple method for extracting the capacitance coupling coefficients of sub-0.5-µm flash memory cells is proposed. Different from the previously proposed methods, this method is not affected by a dopant profile of source region because a band-to-band tunneling current from the interface between the drain and the substrate is probed. Use of a reference device eliminates the necessity to make assumptions concerning the electron transport mechanism. Comparison with the other methods shows that the proposed method is simple and accurate.

  • New Technologies Doing Much for Solving the EMC Problem in the High Performance Digital PCBs and Equipment

    Hirokazu TOHYA  

     
    PAPER

      Vol:
    E82-A No:3
      Page(s):
    450-456

    This paper is consisting of the two novel EMC technologies that we have been developed in our laboratory. The first is the technology for measuring the RF (Radio Frequency) nearby magnetic field and estimation of the RF current in the printed circuit board (PCB) by using the small loop antenna with multi-layer PCB structure developed by our laboratory. I introduce the application of our small loop antenna with its physical structure and the analysis of the nearby magnetic field distribution of the printed circuit board applying the discrete Wavelet analysis. We can understand the behavior of the digital circuit in detail, and we can also take measures to meet the specification about the electromagnetic radiation from the digital circuit from the higher order of priority by using these technologies. The second is our proposing novel technology for reducing the electromagnetic radiation from the digital equipment by taking notice of the improvement of the de-coupling in the PCB. We confirmed the remarkable effect of this technology by redesigning the motherboard of the small-sized computer.

  • Distributed Coupling of Dual-Modes in a Circular Resonator and Low-Profile Dielectric Disk Resonator BPF

    Ikuo AWAI  Arun Chandra KUNDU  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E82-C No:2
      Page(s):
    393-401

    A novel method is proposed to calculate the distributed coupling of dual-modes in a circular resonator. New theoretical expressions are devised to accumulate the infinitesimal coupling between orthogonal modes and their validity is justified by the FD-TD analysis and experiments. The distributed coupling concept of a circular disk resonator is applied to a square disk resonator to calculate its resonant frequency. We have fabricated two types of low-profile dual-mode square dielectric disk resonator BPF, using high dielectric constant material (εr = 93) having a dimension of 5 mm 5 mm 1 mm. The filter characteristics are explained by the transmission line circuit model.

  • A Novel Resonant Coupling Type Microstrip Line Interconnect

    Masashi HOTTA  Yongxi QIAN  Tatsuo ITOH  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E82-C No:1
      Page(s):
    147-150

    Resonant coupling type microstrip line interconnects using a bonding ribbon and dielectric pad have been designed and fabricated. The basic concept of this interconnect is the LC serial resonance of the pad capacitor and ribbon inductor. Both numerical simulation and experiment reveal low return loss and high efficiency connection at the predicted resonant frequency region, which can be readily shifted to higher frequencies by tuning the structural parameters. Improvement in bandwidth of the interconnect is demonstrated by using a pad with higher dielectric constant. Furthermore, it is also shown that a slight modification allows DC connection in addition to efficient coupling at the resonant frequency.

  • FDTD Analysis of Mutual Coupling of Cavity-Backed Slot Antenna Array

    Takashi HIKAGE  Manabu OMIYA  Kiyohiko ITOH  

     
    PAPER

      Vol:
    E81-C No:12
      Page(s):
    1838-1844

    This paper discusses a method to evaluate mutual couplings of cavity-backed slot antennas using the FDTD technique. The antenna fed by the short-ended probe is considered, which is investigated as an element of the power transmission antenna, Spacetenna, for the solar power satellite SPS2000. It is found from the FDTD computation on E-plane two- and four-element array antennas that the size of the problem space should be larger for the evaluation of the mutual coupling than for the estimation of the input impedance. Since enlarging the size of the problem space requires a large amount of computer storage, it is not practical for computer simulations. In order to carry out accurate estimations of the mutual coupling with relatively small amount of computer memory, the problem space is extended only in the broadside of the array antenna and in the other directions there are ten cells between the antenna surface and the outer boundary. Computer simulations demonstrate that there are no differences between the results of the proposed problem space geometry and the problem space extended in each direction of the axis coordinate by the same number of cells. Furthermore comparisons of computed and experimental results demonstrate the effectiveness of the approach after discussing how large the size of the problem space is required to estimate the mutual coupling.

  • On the Distribution of Synchronization Delays in Coupled Fully-Stretching Markov Maps

    Riccardo ROVATTI  Gianluca SETTI  

     
    PAPER-Chaos, Bifurcation and Fractal

      Vol:
    E81-A No:9
      Page(s):
    1769-1776

    Synchronization between two fully stretching piecewise affine Markov maps in the usual master-slave configuration has been proven to be possible in some interesting 2-dimensional and 3-dimensional cases. Aim of this contribution is to make a further step in the study of this phenomenon by showing that, if the two systems synchronize, the probability of having a certain synchronization time is bounded from above by an exponentially vanishing distribution. This result gives some formal ground to the numerical evidence shown in [2].

  • Practical Design Procedure of an Elliptic Function Dual-Mode Cavity Filter Coupled through a Non-zero-Thick Septum

    Toshio ISHIZAKI  Koichi OGAWA  Hideyuki MIYAKE  

     
    PAPER-Passive Element

      Vol:
    E81-C No:6
      Page(s):
    916-923

    Practical design procedure of a four-pole dual-mode cavity filter is explained in the details. Coupling matrix M of an elliptic function filter is derived analytically. The effects of septum thickness is studied experimentally. The dimensions of the aperture have to be modified due to the effects. This attempt had made the filter design very elegant, because no complicated calculation is required. A four-pole filter and a multiplexer are designed and constructed experimentally. They show very excellent performances in the 23 GHz band.

  • Analysis of Coupling between CPW-Fed Slot Antennas Using FDTD with PML Boundary Conditions

    Seppo SAARIO  Yongxi QIAN  Eikichi YAMASHITA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E80-C No:12
      Page(s):
    1608-1613

    A rigorous analysis of coupling between two twin-slot antennas using the Finite Difference Time Domain (FDTD) method is reported for the first time. The Phase Cancellation Effect (PGE) is used to reduce the coupling due to the TM0 surface wave mode between the Coplanar Waveguide (CPW) fed cascade-connected twin-slot antennas. To confirm the effectiveness of this approach, coupling between single-slot and twin-slot elements separated by λ0/2 was analysed. The coupling between the two single-slot antennas was S21 = -30.2 dB. For the case of two twin-slot antennas, the coupling was found to be -37.8 dB, 7.6 dB below that of the single-slot antennas. The phase cancellation effect of surface waves is significant in reducing coupling between two twin-slot antennas, in addition to minimising power loss into substrate modes. A memory optimised implementation of the FDTD method with the Berenger Perfectly Matched Layer (PML) Absorbing Boundary Condition (ABC) was used for the numerical analysis.

  • Analysis for Scattering Problem of Directional Coupler for Slab Waveguides

    Masaji TOMITA  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1482-1490

    In this paper, scattering problem of the directional coupler for the slab waveguides are analyzed by the mode-matching method in the sense of least squares for the lowest order even TE mode incidence. It is considered that the analysis of this coupler for the slab waveguides presents the fundamental data to design the directional coupler for the three dimensional waveguides. This directional coupler is composed of three parallel slabs which are placed at equal space in the dielectric medium. Respective slabs are core regions of three respective waveguides. The periodic groove structure of finite extent is formed on the both surfaces of core region of the central waveguide among them. The power of incident TE mode is coupled to other two waveguides through periodic groove structure. The coupled TE mode propagates in the other waveguides to the same or opposite direction for the direction of incident mode which propagates in the waveguide having periodic structure when the Bragg condition is selected appropriately. The scattered field of each region of this directional coupler is described by the superpositions of the plane waves with bandlimited spectra, respectively. These approximate wave functions are determined by the minimization of the mean-square boundary residual. This method results in the simultaneous Fredholm type integral equations of the second kind for these spectra. The first order approximate solutions of the integral equations are derived and the coupling efficiency and scattered fields are analyzed on the basis of those solutions in this paper.

  • Time Domain Coupling between Non-parallel Transmission Lines

    Weikun LIU  Yoshio KAMI  

     
    PAPER

      Vol:
    E80-B No:11
      Page(s):
    1639-1644

    Coupling in time domain between two non-parallel transmission lines of finite length is analyzed by using a circuit concept. Coupling equations based on the Maxwell's equations for lossless transmission lines in a homogeneous medium are written by a set of non-homogeneous differential equations including distributed source terms produced by external electromagnetic fields. The forcing terms are expressed by vector potentials generated by currents in the line section and at the transitions. A set of solutions in frequency domain is obtained by a four-port network expression with regard to the terminal voltages and currents, and can be applied to estimation of the frequency-domain crosstalk. Utilizing the inverse fast Fourier transform (FFT), the crosstalk responses between the lines is studied in time domain. Comparison of theoretical and experimental results shows the validity of the method.

  • Investigation on Radiated Emission Characteristics of Multilayer Printed Circuit Boards

    Takashi HARADA  Hideki SASAKI  Yoshio KAMI  

     
    PAPER

      Vol:
    E80-B No:11
      Page(s):
    1645-1651

    This paper analyzes mechanisms of radiated emissions from multilayer printed circuit boards (PCBs) and presents a model to describe the characteristics of such radiation. The radiation mechanism from a four-layer PCB, including the internal power and ground planes, is investigated using a time-domain magnetic field measurement near the PCB. Measurement of the waveform indicates that the main source of radiation is in the power distribution planes. To investigate the characteristics of the radiation from the power distribution, the S21s of the board are measured; the board impedance and the transmission characteristics of the power distribution planes are found to be directly related to the S21 between the two points in the board. The results indicate that the power distribution acts as a transmission line at frequencies higher than 100 MHz. A model that can explain well the radiation properties of these planes treats them as a parallel-plate transmission line interconnected by decoupling circuit comprising a decoupling capacitor and interconnect inductance. From the transmission line theory it is deduced that the line resonance gives rise to strong radiated emissions. The interconnect inductance is an important factor in determining the radiation characteristics.

  • Transmission-Line Coupling of Active Microstrip Antennas for One- and Two-Dimensional Phased Arrays

    Ragip ISPIR  Shigeji NOGI  Minoru SANAGI  Kiyoshi FUKUI  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E80-C No:9
      Page(s):
    1211-1220

    Several types of transmission-line coupling are analyzed to use in one- and two-dimensional active antenna arrays, and a method is developed to scan the beam of the arrays using the mutual locking theory. To compensate the undesired effect of strong radiative coupling of the nearest neighbor elements on the phased array performance, addition of resistive stubs to the end elements is proposed. In a 14 array it was observed that after the connection of resistive stubs, the scanning range of the array increased considerably. The effect of oscillator amplitudes on the phased array behavior is explored numerically. In the experiments main beam of 22 and 33 active antenna arrays were steered up to 25 and 15, respectively in the H-plane.

  • A New High Gain Circularly Polarized Microstrip Antenna with Diagonal Short

    Hiroyuki OHMINE  Hitoshi MIZUTAMARI  Yonehiko SUNAHARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:7
      Page(s):
    1090-1097

    A new configuration of high gain circularly polarized microstrip antenna with a diagonal short and its analysis using boundary element method with a radiation load are presented. The center of a radiating patch is shorted with a 45-degree diagonal offset for not only obtaining a high gain but exciting a circular polarization. This configuration leads to achieving high gain with keeping a very low profile configuration. Boundary element method with radiation load which takes into account the effect of radiation loss is employed to analyze this complicated configuration. The radiation load, which is very important when boundary element method is applied to antenna analyses, can be obtained from radiation admittance using recurring technique, so that the accuracy of the antenna characteristic calculations can be improved. This antenna was designed and tested in the L-band and good characteristics, axial ratios and radiation patterns, have been verified.

  • A Low Power 622MHz CMOS Phase-Locked Loop with Source Coupled VCO and Dynamic PFD

    Hiroyasu YOSHIZAWA  Kenji TANIGUCHI  Hiroyuki SHIRAHAMA  Kenichi NAKASHI  

     
    PAPER

      Vol:
    E80-A No:6
      Page(s):
    1015-1020

    To realize the high speed and low power CMOS Phase Locked Loop, we have developed new components of PLL: VCO and PFD. In the VCO, high speed and low power is realized with source coupled inverter pairs in the single loop three gate ring oscillator. And in the PFD, low power and small chip area are realized with the dynamic inverter. And with the simple design adjustment, both reduction of dead zone and immunity of current fluctuation at "O" output are implemented in Charge Pump. A fully CMOS PLL with these components have been designed with 0.8µ CMOS. At 622MHz operation, the power dissipation of 18mW is achieved by SPICE simulation.

  • High Efficient Spatial Power Combining Utilizing Active Integrated Antenna Technique

    Shigeo KAWASAKI  

     
    PAPER

      Vol:
    E80-C No:6
      Page(s):
    800-805

    This paper describes a concept of the quasioptical spatial power combining technique and its demonstration of active integrated antenna arrays with strong coupling as an actual example of high efficient combiner in high frequencies. Some configurations of the arrays such as a 3-element linear array and a 33 array are designed with a circuit and electromagnetic simulator. In order to predict the operating frequencies, large signal FET model parameters are determined from measured small signal S-parameters.

  • Coupling Coefficients and Random Geometrical Imperfections of an Image Fiber

    Akira KOMIYAMA  

     
    LETTER-Opto-Electronics

      Vol:
    E80-C No:5
      Page(s):
    717-719

    Random fluctuations of the propagation constants of modes along the fiber axis are taken into consideration and the power coupling coefficient between cores of an image fiber is theoretically derived. For the fiber used for the measurement in the previous paper (A. Komiyama, IEICE, vol.E79-C, no.2, pp.243-248, 1996) it is verified that the coupling coefficient can be described in terms of statistical properties of the propagation constants in the cross-section of the fiber.

  • Reduction of Coupling between Two Wire Antennas Using a Slot

    Takehiro MORIOKA  Kazuhiro HIRASAWA  

     
    PAPER

      Vol:
    E80-B No:5
      Page(s):
    699-705

    The reduction of coupling between two wire antennas operating at different frequencies on an infinite ground plane is considered. An impedance loaded slot is introduced between the two antennas. A coupling coefficient and a transmission coefficient are used to evaluate the coupling behavior. It is found that by an appropriate choice of the slot length, location and load impedance the coupling coefficient can be reduced significantly. The problem is analyzed by the method of moments. Port parameters are used to relate a feed port, load ports on the two wire antennas and a load port on the slot. In so doing, a large amount of computation time is saved in calculating the antenna characteristics for various loads on the slot.

221-240hit(268hit)