The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] coupling(268hit)

61-80hit(268hit)

  • Design of A Wideband Filter With Attenuation Poles Using A Novel Parallel-Coupled Three-line Unit Based on Cross-Coupling

    Chun-Ping CHEN  Junya ODA  Tetsuo ANADA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    689-696

    To implement a wideband bandpass filter with improved skirt-selectivity and out-band characteristics, a new parallel-coupled three-line unit with two short-circuited stubs symmetrically-loaded at the center line is proposed. Unlike most traditional ones, the passband of the proposed parallel-coupled three-line structure is based on the cross-coupling between non-adjacent lines rather than the direct-coupling between adjacent ones, whereas a pair of attenuation poles is found in the stopbands. After revealing its work mechanism, an efficient filter-design-scheme is correspondingly proposed for the presented structure. Firstly, based on a chebyshev-filter synthesis theory, a wideband passband filter consisting of a parallel-coupled two-line and two short-circuited stubs loaded at the input- and output- ports is designed. Furthermore, by putting a properly-designed 3/4-wavelength stepped-impedance resonator (SIR) in between the parallel-coupled two lines, two attenuation poles are then realized at the frequencies very close to the cutoff ones. Accordingly, the roll-off characteristics of the filter are significantly-improved to greater than 100,dB/GHz. Furthermore, two-section open-ended stubs are used to replace the short-circuited ones to realize a pair of extra attenuation poles in stopbands. To validate the proposed techniques, a wideband filter with a bandwidth of 3--5,GHz (Fractional bandwidth (FBW) $= (5,GHz-3,GHz)/4,GHz =50%)$ was designed, simulated, fabricated and measured. The measured responses of the filter agree well with the simulation and theoretical ones, which validates the effectiveness of the newly-proposed three-line unit and the corresponding design scheme.

  • Chip Level Simulation of Substrate Noise Coupling and Interference in RF ICs with CMOS Digital Noise Emulator

    Naoya AZUMA  Shunsuke SHIMAZAKI  Noriyuki MIURA  Makoto NAGATA  Tomomitsu KITAMURA  Satoru TAKAHASHI  Motoki MURAKAMI  Kazuaki HORI  Atsushi NAKAMURA  Kenta TSUKAMOTO  Mizuki IWANAMI  Eiji HANKUI  Sho MUROGA  Yasushi ENDO  Satoshi TANAKA  Masahiro YAMAGUCHI  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    546-556

    Substrate noise coupling in RF receiver front-end circuitry for LTE wireless communication was examined by full-chip level simulation and on-chip measurements, with a demonstrator built in a 65nm CMOS technology. A CMOS digital noise emulator injects high-order harmonic noises in a silicon substrate and induces in-band spurious tones in an RF receiver on the same chip through substrate noise interference. A complete simulation flow of full-chip level substrate noise coupling uses a decoupled modeling approach, where substrate noise waveforms drawn with a unified package-chip model of noise source circuits are given to mixed-level simulation of RF chains as noise sensitive circuits. The distribution of substrate noise in a chip and the attenuation with distance are simulated and compared with the measurements. The interference of substrate noise at the 17th harmonics of 124.8MHz — the operating frequency of the CMOS noise emulator creates spurious tones in the communication bandwidth at 2.1GHz.

  • Analysis of Optical Output Characteristics in Waveguide Coupled HCG-VCSELs

    Yoshihiro TSUNEMI  Kazuhiro IKEDA  Hitoshi KAWAGUCHI  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E97-C No:4
      Page(s):
    369-376

    We numerically investigated the optical output characteristics in two kinds of optical waveguide coupled high-index-contrast subwavelength grating VCSELs (HCG-VCSELs) that couple the laser output to the in-plane waveguide, operating at a 1.55-µm region. One is the transverse electric (TE) HCG, and the other is the transverse magnetic (TM) HCG. In a waveguide coupled HCG without a cavity structure, the out-coupling efficiency to the waveguide strongly depends on the intensity of the incident light at the starting edge of the waveguide. In a waveguide coupled HCG-VCSEL, the ratio of the waveguide output to the optical power inside the active region is determined also by the intensity of the resonant mode at the waveguide edge. The TE-HCG-VCSEL exhibited an almost 30 times larger waveguide output power while the quality factor of the laser cavity is 1/3, compared to those in the TM-HCG-VCSEL. The single mode condition was satisfied for the waveguide of the TE-HCG-VCSEL while the first order mode was allowed for that of the TM-HCG-VCSEL. Positioning the mesa edge at the waveguide edge within 1-µm accuracy results in waveguide outputs of about 0.7 and 0.02% of that inside the active region for TE- and TM-HCG-VCSEL, respectively.

  • Performance of Data Transmission in Wireless Power Transfer with Coil Displacements

    Motoki IIDA  Kazuki SUGENO  Mamiko INAMORI  Yukitoshi SANADA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:4
      Page(s):
    1016-1020

    This letter investigates the relationship between antenna position and data communication performance in a magnetic resonance wireless power transfer (MRWPT) system. In MRWPT information such as the types of equipments, the required amount of electrical power, or the timing of power transfer should be exchanged. It is assumed here that power transfer coils in the MRWPT system are employed as antennas for data communication. The frequency characteristics of the antennas change due to coil displacements. The power transfer coils are modeled as a band pass filter (BPF) and the frequency characteristics of the filter are presented in this letter. The characteristics of the filter are derived through circuit simulation and resulting data communication performance is evaluated. Numerical results obtained through computer simulation show that the bit error late (BER) performance can be improved by controlling the center frequency of the communication link.

  • A New Scheme to Enhance Bandwidth of Printed Dipole for Wideband Applications

    Dinh Thanh LE  Nguyen Quoc DINH  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:4
      Page(s):
    773-782

    This paper presents a new technique to enhance the bandwidth of a printed dipole antenna for ultra-wideband applications. The basic idea is to exploit mutual coupling between the feeding line, which is designed closed and paralleled to dipole arms, the dipole arms and other elements of the antenna. Dipole arms, feeding lines as well as other parts are investigated in order to expand antenna bandwidth while still retaining antenna compactness. Based on the proposed technique, we develop two sample printed dipole antennas for advanced wireless communications. One is an ultra-wideband antenna which is suitable for multi-band-mode ultra-wideband applications or being a sensing antenna in cognitive radio. The other is a reconfigurable antenna which would be applicable for wideband cognitive radios. Antenna characteristics such as radiation patterns, current distributions, and gains at different frequencies are also investigated for both sample antennas.

  • Vertical Link On/Off Regulations for Inductive-Coupling Based Wireless 3-D NoCs

    Hao ZHANG  Hiroki MATSUTANI  Yasuhiro TAKE  Tadahiro KURODA  Hideharu AMANO  

     
    PAPER-Computer System

      Vol:
    E96-D No:12
      Page(s):
    2753-2764

    We propose low-power techniques for wireless three-dimensional Network-on-Chips (wireless 3-D NoCs), in which the connections among routers on the same chip are wired while the routers on different chips are connected wirelessly using inductive-coupling. The proposed low-power techniques stop the clock and power supplies to the transmitter of the wireless vertical links only when their utilizations are higher than the threshold. Meanwhile, the whole wireless vertical link will be shut down when the utilization is lower than the threshold in order to reduce the power consumption of wireless 3-D NoCs. This paper uses an on-demand method, in which the dormant data transmitter or the whole vertical link will be activated as long as a flit comes. Full-system many-core simulations using power parameters derived from a real chip implementation show that the proposed low-power techniques reduce the power consumption by 23.4%-29.3%, while the performance overhead is less than 2.4%.

  • An Inductive-Coupling Interconnected Application-Specific 3D NoC Design

    Zhen ZHANG  Shouyi YIN  Leibo LIU  Shaojun WEI  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E96-A No:12
      Page(s):
    2633-2644

    TSV-interconnected 3D chips face problems such as high cost, low yield and large power dissipation. We propose a wireless 3D on-chip-network architecture for application-specific SoC design, using inductive-coupling interconnect instead of TSV for inter-layer communication. Primary design challenge of inductive-coupling 3D SoC is allocating wireless links in the 3D on-chip network effectively. We develop a design flow fully exploiting the design space brought by wireless links while providing flexible tradeoff for user's choice. Experimental results show that our design brings great improvement over uniform design and Sunfloor algorithm on latency (5% to 20%) and power consumption (10% to 45%).

  • SAT-Based Test Generation for Open Faults Using Fault Excitation Caused by Effect of Adjacent Lines

    Jun YAMASHITA  Hiroyuki YOTSUYANAGI  Masaki HASHIZUME  Kozo KINOSHITA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E96-A No:12
      Page(s):
    2561-2567

    Open faults are difficult to test since the voltage at the floating line is unpredictable and depends on the voltage at the adjacent lines. The effect of open faults can be easily excited if a test pattern provides the opposite logic value to most of the adjacent lines. In this paper, we present a procedure to generate as high a quality test as possible. We define the test quality for evaluating the effect of adjacent lines by assigning an opposite logic value to the faulty line. In our proposed test generation method, we utilize the SAT-based ATPG method. We generate test patterns that propagate the faulty effect to primary outputs and assign logic values to adjacent lines opposite that of the faulty line. In order to estimate test quality for open faults, we define the excitation effectiveness Eeff. To reduce the test volume, we utilize the open fault simulation. We calculate the excitation effectiveness by open fault simulation in order to eliminate unnecessary test patterns. The experimental results for the benchmark circuits prove the effectiveness of our procedure.

  • A Partially Driven Array Antenna Backed by a Reflector with a Reduction in the Number of Driven Elements by Up to 67%

    Tadashi TAKANO  Takehiro IMURA  Midori OKUMURA  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:11
      Page(s):
    2883-2890

    This paper describes a novel technique to replace some of the driven elements in an array antenna with parasitic elements. First, the antenna characteristics are studied by simulation for a basic unit array with one driven and two parasitic elements. The entire antenna is backed with a flat reflector to conform to practical applications. The parasitic elements are excited by the neighboring driven elements through the electromagnetic coupling effect. It is shown that at the optimal coupling condition, the radiation patterns are almost identical with those of an array antenna whose elements are all driven without coupling. The simulation result is confirmed by performing an experiment at 5.8GHz (λ =51.7mm). Finally, a 12-element array is formed by combining four unit arrays. The simulation results show that the maximum antenna gain is 19.4dBi, indicating that there is no penalty with respect to the antenna gain of a fully driven 12-element array. Therefore, the array antenna can be considerably simplified by replacing 67% of its elements with parasitic elements.

  • A 24GHz Transformer Coupled CMOS VCO for a Wide Linear Tuning Range

    Jae-Hoon SONG  Byung-Sung KIM  Sangwook NAM  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E96-C No:10
      Page(s):
    1348-1350

    In this paper, a 24GHz transformer-coupled VCO is presented for a wide linear tuning range in the 0.13-µm CMOS process. The measured results of the proposed VCO show that the center frequency is 23.5GHz with 7.4% frequency tuning range. The output frequency curve has wide linear tuning region (5.5%) at the middle of the curve. Also, the VCO exhibits good phase noise of -110.23dBc/Hz at an offset frequency of 1 MHz. It has a compact chip size of 430 × 500µm2. The VCO core DC power consumption is 5.4mW at 1.35V VDD.

  • Broadside Coupling High-Temperature Superconducting Dual-Band Bandpass Filter

    Yuta TAKAGI  Kei SATOH  Daisuke KOIZUMI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:8
      Page(s):
    1033-1040

    This paper proposes a novel high-temperature superconducting dual-band bandpass filter (HTS-DBPF), that employs a broadside coupling structure, in which quarter-wavelength resonators are formed on opposite sides of each substrate. This structure provides a dual-band operation of the BPF and flexibility, in the sense of having a wide range in selecting two center passband frequencies of the HTS-DBPF. This paper employs the ratio of the lower and higher center passband frequencies, α, as a criterion for evaluating the flexibility. The obtained α ranges are from 1 to 4.7, which are the widest for DBPFs for mobile communications applications, to the best knowledge of the authors. This paper presents a 2.4-/2.9-GHz band HTS-DBPF, as an experimental example, using a YBCO film deposited on an MgO substrate. The measured frequency responses of the HTS-DBPF agree with the electromagnetic simulated results. Measurement and simulation results confirm that the proposed filter architecture is effective in configuring a DBPF that can set each center passband frequency widely.

  • Ultra-High Extinction Ratio and Low Cross Talk Characteristics of 4-Array Integrated SOA Module with Novel Wavelength-Insensitive Parallel Optical Coupling Scheme

    Goji NAKAGAWA  Yutaka KAI  Kyosuke SONE  Setsuo YOSHIDA  Shinsuke TANAKA  Ken MORITO  Susumu KINOSHITA  

     
    PAPER

      Vol:
    E96-C No:7
      Page(s):
    1003-1011

    We have designed and fabricated a compact 4-array integrated SOA module using a novel parallel optical coupling scheme and polarization-insensitive built-in array isolators. We achieved ultra-high On/Off extinction ratio of more than 60 dB and low cross talk of better than -60 dB as well as high-isolation of over 47 dB in wide wavelength ranges. We also developed a wavelength-insensitive parallel optical coupling scheme and an efficient thermal dissipating structure for a 4-array SOA module. We applied these technologies into 4-array SOA module fabrication and demonstrated a uniform optical coupling with the loss variance of 1 dB over the 140-nm wavelength ranges. We also demonstrated simultaneous operation of 300 mA 4 channels with low thermal degradation of the module gain less than 1 dB.

  • On-Chip Switched Decoupling Capacitor for Fast Voltage Hopping of DVS Systems

    Jinmyoung KIM  Toru NAKURA  Koichiro ISHIBASHI  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    560-567

    This paper presents a decoupling capacitance boosting method for the resonant supply noise reduction by fast voltage hopping of DVS systems. The proposed method utilizes a foot transistor as a switch between a conventional decoupling capacitor (decap) and GND. The switching controls of the foot transistor depending on the supply noise states achieve an effective noise reduction as well as fast settling time compared with the conventional passive decaps. The measurement results of a test chip fabricated in a 0.18 µm CMOS technology show 12X boost of effective decap value, and 65.8% supply noise reduction with 96% settling time improvement.

  • Mutual Coupling Reduction between Closely-Placed MSAs for Bi-Static Radar Using Wave Absorber

    Takenori YASUZUMI  Koudai TAKAHASHI  Naoki SANO  Ryosuke SUGA  Osamu HASHIMOTO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:1
      Page(s):
    77-83

    This paper presents a new simple method for reducing mutual coupling between dual-element microstrip antennas (MSAs) for bistatic radar using a wave absorber. The two elements are closely placed on a substrate by the distance of λ0/4 through the wall-shaped absorber. The height and width of the absorber were optimized for minimum mutual coupling with the electromagnetic simulator. It was found that less than -60 dB minimum mutual coupling can be achieved by the impedance matching of the absorber in a near field. The influence for the reflection characteristics from the absorber is small enough, and the reduction of the antenna gain is only 1.1 dB. The rate of the lost power characteristics showed that the absorption improves the mutual couplings. Then the proposed structure for a practical configuration was investigated. The measurement results of the optimized structure tallied well with the simulation results.

  • Power Distribution Network Optimization for Timing Improvement with Statistical Noise Model and Timing Analysis

    Takashi ENAMI  Takashi SATO  Masanori HASHIMOTO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2261-2271

    We propose an optimization method for power distribution network that explicitly deals with timing. We have found and focused on the facts that decoupling capacitance (decap) does not necessarily improve gate delay depending on the switching timing within a cycle and that power wire expansion may locally degrade the voltage. To resolve the above facts, we devised an efficient sensitivity calculation of timing to decap size and power wire width for guiding optimization. The proposed method, which is based on statistical noise modeling and timing analysis, accelerates sensitivity calculation with an approximation and adjoint sensitivity analysis. Experimental results show that decap allocation based on the sensitivity analysis efficiently minimizes the worst-case circuit delay within a given decap budget. Compared to the maximum decap placement, the delay improvement due to decap increases by 3.13% even while the total amount of decaps is reduced to 40%. The wire sizing with the proposed method also efficiently reduces required wire resource necessary to attain the same circuit delay by 11.5%.

  • Spatially Coupled LDPC Coding and Linear Precoding for MIMO Systems Open Access

    Zhonghao ZHANG  Chongbin XU  Li PING  

     
    INVITED PAPER

      Vol:
    E95-B No:12
      Page(s):
    3663-3670

    In this paper, we present a transmission scheme for a multiple-input multiple-output (MIMO) quasi-static fading channel with imperfect channel state information at the transmitter (CSIT). In this scheme, we develop a precoder structure to exploit the available CSIT and apply spatial coupling for further performance enhancement. We derive an analytical evaluation method based on extrinsic information transfer (EXIT) functions, which provides convenience for our precoder design. Furthermore, we observe an area property indicating that, for a spatially coupled system, the iterative receiver can perform error-free decoding even the original uncoupled system has multiple fixed points in its EXIT chart. This observation implies that spatial coupling is useful to alleviate the uncertainty in CSIT which causes difficulty in designing LDPC code based on the EXIT curve matching technique. Numerical results are presented, showing an excellent performance of the proposed scheme in MIMO fading channels with imperfect CSIT.

  • A Wideband Common-Gate Low-Noise Amplifier Using Capacitive Feedback

    Toshihiko ITO  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E95-C No:10
      Page(s):
    1666-1674

    In this paper, a capacitive-cross-coupling common-gate (CCC-CG) LNA using capacitive feedback is proposed to improve the noise figure (NF). In the conventional CCC-CG LNA, the transconductance gm is determined by the input-matching condition while a lager gm is required to improve NF. gm of the proposed LNA can be increased and NF can be improved by using the added capacitive feedback. The analytical calculation shows that the proposed LNA can perform better than the conventional CCC-CG LNA. In the measurement results using a 0.18-µm CMOS technology, the gain is 10.4–13.4 dB, NF is 2.7–2.9 dB at 0.8–1.8 GHz, and IIP3 is -7 dBm at 0.8 GHz. The power consumption is 6.5 mW with a 1.8-V supply.

  • Fabrication of Polarization-Maintaining Photonic Crystal Fiber Coupler with Air Hole State Control Using CO2 Laser Irradiation Technique

    Hirohisa YOKOTA  Yusuke ITO  Hiroki KAWASHIRI  Hideyuki KIUE  Hideo TOBITA  Yoh IMAI  Yutaka SASAKI  

     
    BRIEF PAPER-Optoelectronics

      Vol:
    E95-C No:10
      Page(s):
    1689-1691

    Polarization-maintaining photonic crystal fiber couplers (PM-PCFCs) were fabricated using a CO2 laser irradiation technique. We could control the states of air holes in the tapered region of couplers by adjusting the laser power density in the fusion and the elongation processes. It was demonstrated that the air hole remaining PM-PCFC exhibited polarization-splitting characteristics and that the air hole collapsed PM-PCFC had polarization insensitive coupling characteristics.

  • Resonant-Mode Characteristics of a New Three-Mode Hybrid Microstrip/Slotline Resonator and Novel Realization of Compact Bandpass Filter with Four Transmission Zeros

    Masataka OHIRA  Zhewang MA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1203-1210

    This paper proposes a new three-mode resonator, which consists of a parallel-coupled microstrip line resonator embedded with a slotline resonator, and develops a compact low-loss bandpass filter (BPF) with a sharp roll-off response because of four transmission zeros (TZ) located very near the passband. Resonance mechanism and properties of the three modes are first analyzed by using an eigen-mode analysis, and then an equivalent circuit model is established for expressing a novel coupling scheme of the developed BPF. It is made clear from the results of circuit analysis that the four TZs are produced because of multiple paths between the input/output stub lines formed by the three resonant modes and the direct source/load coupling. The validity of the proposed resonator and filter is supported by the comparison between simulated and measured results.

  • Reduction in Mutual Coupling Characteristics of Slot-Coupled Planar Antenna due to Rectangular Elements

    Huiling JIANG  Ryo YAMAGUCHI  Keizo CHO  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2368-2376

    High frequency bands such as the 3-GHz band have received much attention as frequency resources for broadband mobile communication systems. Radio Frequency (RF) integrated antennas are considered to be useful as base station antennas in decreasing the feeding loss that is otherwise inevitable in high frequency bands and they ensure sufficient power for broadband transmission. One problem in actualizing RF integrated antennas is miniaturizing the duplexer, which is generally large, among the RF circuitry components. To downsize the duplexer, we consider separately locating the transmitter (Tx) and receiver (Rx) antennas. To suppress further the mutual coupling between the Tx and Rx antennas, we investigate a filter integrated antenna configuration. In this paper, we consider an aperture coupled patch antenna as the base antenna configuration and propose a new filter integrated antenna that comprises multiple rectangular elements installed between the coupling slot and radiation element of the Rx antenna. The simulation and measurement results confirm that the new antenna reduces the mutual coupling in the transmission frequency band up to 5.7 dB compared to the conventional slot coupled patch antenna configuration.

61-80hit(268hit)