The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] current-mode(82hit)

1-20hit(82hit)

  • Design and Analysis of Scalability in Current-Mode Analog-to-Time Converter for an Energy-Efficient and High-Resolution CMOS Biosensor Array

    Kei IKEDA  Atsuki KOBAYASHI  Kazuo NAKAZATO  Kiichi NIITSU  

     
    BRIEF PAPER

      Vol:
    E100-C No:6
      Page(s):
    597-601

    High-resolution bio-imaging is a key component for the advancement of life science. CMOS electronics is one of the promising candidates for emerging high-resolution devices because it offers nano-scale transistors. However, the resolution of the existing CMOS bio-imaging devices is several micrometers, which is insufficient for analyzing small objects such as bacteria and viruses. This paper presents the results of an analysis of the scalability of a current-mode analog-to-time converter (CMATC) to develop a high-resolution CMOS biosensor array. Simulations were performed using 0.6-µm, 0.25-µm, and 0.065-µm CMOS technology nodes. The Simulation results for the power consumption and resolution (cell size) showed that the CMATC has high-scalability and is a promising candidate to enable high-resolution CMOS bio-imaging.

  • New Current-Mode Multipliers by CNTFET-Based n-Valued Binary Converters

    Mona MORADI  Reza FAGHIH MIRZAEE  Keivan NAVI  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:1
      Page(s):
    100-107

    This paper presents new Binary Converters (or current-mode compressors) by the usage of carbon nanotube field effect transistors. The new designs are made of three parts: 1) the input currents which are converted to voltage; 2) threshold detectors; and 3) the output current flow paths. In addition, an 8×8-bit multiplier is considered as a bench mark to estimate their efficiency degrees. The first approach is based on high-order Binary Converters, and the second one is only composed of 4BCs and Half Adders.

  • Implementation of Voltage-Mode/Current-Mode Hybrid Circuits for a Low-Power Fine-Grain Reconfigurable VLSI

    Xu BAI  Michitaka KAMEYAMA  

     
    PAPER-Integrated Electronics

      Vol:
    E97-C No:10
      Page(s):
    1028-1035

    This paper proposes low-power voltage-mode/current-mode hybrid circuits to realize an arbitrary two-variable logic function and a full-adder function. The voltage and current mode can be selected for low-power operations at low and high frequency, respectively, according to speed requirement. An nMOS pass transistor network is shared to realize voltage switching and current steering for the voltage- and current-mode operations, respectively, which leads to high utilization of the hardware resources. As a result, when the operating frequency is more than 1.15,GHz, the current mode of the hybrid logic circuit is more power-efficient than the voltage mode. Otherwise, the voltage mode is more power-efficient. The power consumption of the hybrid two-variable logic circuit is lower than that of the conventional two-input look-up table (LUT) using CMOS transmission gates, when the operating frequency is more than 800,MHz. The delay and area of the hybrid two-variable logic circuit are increased by only 7% and 13%, respectively

  • Design of an Energy-Efficient Ternary Current-Mode Intra-Chip Communication Link for an Asynchronous Network-on-Chip

    Akira MOCHIZUKI  Hirokatsu SHIRAHAMA  Yuma WATANABE  Takahiro HANYU  

     
    PAPER-Communication for VLSI

      Vol:
    E97-D No:9
      Page(s):
    2304-2311

    An energy-efficient intra-chip communication link circuit with ternary current signaling is proposed for an asynchronous Network-on-Chip. The data signal encoded by an asynchronous three-state protocol is represented by a small-voltage-swing three-level intermediate signal, which results in the reduction of transition delay and achieving energy-efficient data transfer. The three-level voltage is generated by using a combination of dynamically controlled current sources with feedback loop mechanism. Moreover, the proposed circuit contains a power-saving scheme where the dynamically controlled transistors also are utilized. By cutting off the current paths when the data transfer on the communication link is inactive, the power dissipation can be greatly reduced. It is demonstrated that the average data-transfer speed is about 1.5 times faster than that of a binary CMOS implementation using a 130nm CMOS technology at the supply voltage of 1.2V.

  • A Novel Alternating Voltage Controlled Current Sensing Method for Suppressing Thermal Dependency

    Kazuki ITOH  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E97-C No:5
      Page(s):
    431-437

    Voltage Regulator Module, called VRM is a dedicated module for supplying power to microprocessor units. Recently, significant improvement of microprocessor units arises new challenges for supplying stable power. For stable and efficient control, multiphase interleaved topology is often used in today's VRM. To achieve high performance VRM, a current sensing circuit with both high efficiency and high accuracy is demanded. To achieve high accuracy, thermal dependency is a problem to be solved. In this paper, a novel alternating voltage controlled current sensing method is proposed for suppressing thermal dependency. In the proposed method, a high frequency AC voltage is superposed on the gate-ON-voltage. Then, the AC channel current is generated, and its amplitude becomes proportional to inductor current. The AC channel current is detected through a LC filter. The proposed current sensing method is very effective for realizing a current mode control DC-DC converter. In first, we simulated the relationship between our proposed current sensing method and a electrical characteristic of a power MOSFET. We used a power MOSFET device model published by a manufacture in this simulation. From the results, we find the gate parasitic capacitance of power MOSFET effects on the sensitivity of the current sensing circuit. Besides, the power dissipation in a power MOSFET increases by the frequency of applied gate ac voltage. Moreover, the proposed current sensing circuit based on the proposed method was designed and simulated the operations by Hspice. From the results, the designed current sensing circuit based on the proposed method has enough wide sensing window from 3A to 30A for VRM applications. Moreover, comparing to the conventional current sensing circuits with the MOSFET ON-resistance, the error of the proposed current sensing circuit can be decreased over 25% near 100°C.

  • A Multiple-Valued Reconfigurable VLSI Architecture Using Binary-Controlled Differential-Pair Circuits

    Xu BAI  Michitaka KAMEYAMA  

     
    PAPER-Integrated Electronics

      Vol:
    E96-C No:8
      Page(s):
    1083-1093

    This paper presents a fine-grain bit-serial reconfigurable VLSI architecture using multiple-valued switch blocks and binary logic modules. Multiple-valued signaling is utilized to implement a compact switch block. A binary-controlled current-steering technique is introduced, utilizing a programmable three-level differential-pair circuit to implement a high-performance low-power arbitrary two-variable binary function, and increase the noise margins in comparison with the quaternary-controlled differential-pair circuit. A current-source sharing technique between a series-gating differential-pair circuit and a current-mode D-latch is proposed to reduce the current source count and improve the speed. It is demonstrated that the power consumption and the delay of the proposed multiple-valued cell based on the binary-controlled current-steering technique and the current-source-sharing technique are reduced to 63% and 72%, respectively, in comparison with those of a previous multiple-valued cell.

  • A Bit-Serial Reconfigurable VLSI Based on a Multiple-Valued X-Net Data Transfer Scheme

    Xu BAI  Michitaka KAMEYAMA  

     
    PAPER-Computer System

      Vol:
    E96-D No:7
      Page(s):
    1449-1456

    A multiple-valued data transfer scheme using X-net is proposed to realize a compact bit-serial reconfigurable VLSI (BS-RVLSI). In the multiple-valued data transfer scheme using X-net, two binary data can be transferred from two adjacent cells to one common adjacent cell simultaneously at each “X” intersection. One cell composed of a logic block and a switch block is connected to four adjacent cross points by four one-bit switches so that the complexity of the switch block is reduced to 50% in comparison with the cell of a BS-RVLSI using an eight nearest-neighbor mesh network (8-NNM). In the logic block, threshold logic circuits are used to perform threshold operations, and then their binary dual-rail voltage outputs enter a binary logic module which can be programmed to realize an arbitrary two-variable binary function or a bit-serial adder. As a result, the configuration memory count and transistor count of the proposed multiple-valued cell are reduced to 34% and 58%, respectively, in comparison with those of an equivalent CMOS cell. Moreover, its power consumption for an arbitrary 2-variable binary function becomes 67% at 800 MHz under the condition of the same delay time.

  • A CMOS Current-Mode S-Shape Correction Circuit with Shape-Adjustable Control

    Kuo-Jen LIN  Chih-Jen CHENG  Hsin-Cheng SU  Jwu-E CHEN  

     
    PAPER

      Vol:
    E95-C No:11
      Page(s):
    1730-1736

    A CMOS current-mode S-shape correction circuit with shape-adjustable control is proposed for suiting different LCD panel's characteristics from different manufactures. The correction shape is divided into three segments for easy curve-fitting using three lower order polynomials. Each segment could be realized by a corresponding current-mode circuit. The proposed circuit consists of several control points which are designed for tuning the correction shape. The S-shape correction circuit was fabricated using the 0.35 µm TSMC CMOS technology. The measured input dynamic range of the circuit is from 0 µA to 220 µA. The -3 dB bandwidth of the circuit is up to 262 MHz in a high input current region.

  • Long-Range Asynchronous On-Chip Link Based on Multiple-Valued Single-Track Signaling

    Naoya ONIZAWA  Atsushi MATSUMOTO  Takahiro HANYU  

     
    PAPER-Circuit Theory

      Vol:
    E95-A No:6
      Page(s):
    1018-1029

    We have developed a long-range asynchronous on-chip data-transmission link based on multiple-valued single-track signaling for a highly reliable asynchronous Network-on-Chip. In the proposed signaling, 1-bit data with control information is represented by using a one-digit multi-level signal, so serial data can be transmitted asynchronously using only a single wire. The small number of wires alleviates the routing complexity of wiring long-range interconnects. The use of current-mode signaling makes it possible to transmit data at high speed without buffers or repeaters over a long interconnect wire because of the low-voltage swing of signaling, and it leads to low-latency data transmission. We achieve a latency of 0.45 ns, a throughput of 1.25 Gbps, and energy dissipation of 0.58 pJ/bit with a 10-mm interconnect wire under a 0.13 µm CMOS technology. This represents an 85% decrease in latency, a 150% increase in throughput, and a 90% decrease in energy dissipation compared to a conventional serial asynchronous data-transmission link.

  • The Design of a K-Band 0.8-V 9.2-mW Phase-Locked Loop

    Zue-Der HUANG  Chung-Yu WU  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:8
      Page(s):
    1289-1294

    A 0.8-V CMOS Phase-Locked Loop (PLL) has been designed and fabricated by using a 0.13-µm 1p8m CMOS process. In the proposed PLL, the double-positive-feedbacks voltage-controlled oscillator (DPF-VCO) is used to generate current signals for the coupling current-mode injection-locked frequency divider (CCMILFD) and current-injection current-mode logic (CICML) divider. A short-pulsed-reset phase frequency detector (SPR-PFD) with the reduced pulse width of reset signal to improve the linear range of the PFD and a complementary-type charge pump to eliminate the current path delay are also adopted in the proposed PLL. The measured in-band phase noise of the fabricated PLL is -98 dBc/Hz. The locking range of the PLL is from 22.6 GHz to 23.3 GHz and the reference spur level is -69 dBm that is 54 dB bellow the carrier. The power consumption is 9.2 mW under a 0.8-V power supply. The proposed PLL has the advantages of low phase noise, low reference spur, and low power dissipation at low voltage operation.

  • Dicode Partial Response Signaling over Inductively-Coupled Channel

    Koichi YAMAGUCHI  Masayuki MIZUNO  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    613-618

    Dicode partial response signaling system over inductively-coupled channel has been developed to achieve higher data rate than self-resonant frequencies of inductors. The developed system operates at five times higher data rates than conventional systems with the same inductor. A current-mode equalization in the transmitter designed in a 90-nm CMOS successfully reshapes waveforms to obtain dicode signals at the receiver. For a 5-Gb/s signaling through the coupled inductors with a 120-µm diameter and a 120-µm distance, 20-mV eye opening was observed. The power consumption value of the transmitter was 58 mW at the 5-Gb/s operation.

  • Realization of Current-Mode KHN-Equivalent Biquad Using Current Follower Transconductance Amplifiers (CFTAs)

    Norbert HERENCSAR  Jaroslav KOTON  Kamil VRBA  

     
    LETTER-Analog Signal Processing

      Vol:
    E93-A No:10
      Page(s):
    1816-1819

    In this letter a new active element the Current Follower Transconductance Amplifier (CFTA) for the realization of the current-mode analog blocks is presented. The element is a combination of the Current Follower (CF) and the Balanced Output Transconductance Amplifier (BOTA). Possible internal structure of the CFTA is presented. The usage of the new active element is shown on the design of the Kerwin-Huelsman-Newcomb (KHN) structure working in the current mode. The frequency filter using the CFTA elements has been designed using the signal-flow graphs. The circuit structure employs three CFTA elements and two grounded passive elements. The filter enables realizing not only the basic functions as the low- (LP), band- (BP) and high-pass (HP) but also the notch and all-pass (AP) filter. The advantage of the structure presented is that the outputs of the filter are at high impedance and hence it is not necessary to use other auxiliary active elements. The properties of the filter proposed were verified by sensitivity and AC analyses in the PSPICE program.

  • Optimization and Verification of Current-Mode Multiple-Valued Digit ORNS Arithmetic Circuits

    Motoi INABA  Koichi TANNO  Hiroki TAMURA  Okihiko ISHIZUKA  

     
    PAPER-Multiple-Valued VLSI Technology

      Vol:
    E93-D No:8
      Page(s):
    2073-2079

    In this paper, optimization and verification of the current-mode multiple-valued digit ORNS arithmetic circuits are presented. The multiple-valued digit ORNS is the redundant number system using digit values in the multiple-valued logic and it realizes the full-parallel calculation without any ripple carry propagation. First, the 4-bit addition and multiplication algorithms employing the multiple-valued digit ORNS are optimized through logic-level analyses. In the multiplier, the maximum digit value and the number of modulo operations in series are successfully reduced from 49 to 29 and from 3 to 2, respectively, by the arrangement of addition lines. Next, circuit components such as a current mirror are verified using HSPICE. The proposed switched current mirror which has functions of a current mirror and an analog switch is effective to reduce the minimum operation voltage by about 0.13 volt. Besides an ordinary strong-inversion region, the circuit components operated under the weak-inversion region show good simulation results with the unit current of 10 nanoamperes, and it brings both of the lower power dissipation and the stable operation under the lower supply voltage.

  • Highly Reliable Multiple-Valued One-Phase Signalling for an Asynchronous On-Chip Communication Link

    Naoya ONIZAWA  Takahiro HANYU  

     
    PAPER-Multiple-Valued VLSI Technology

      Vol:
    E93-D No:8
      Page(s):
    2089-2099

    This paper presents highly reliable multiple-valued one-phase signalling for an asynchronous on-chip communication link under process, supply-voltage and temperature variations. New multiple-valued dual-rail encoding, where each code is represented by the minimum set of three values, makes it possible to perform asynchronous communication between modules with just two wires. Since an appropriate current level is individually assigned to the logic value, a sufficient dynamic range between adjacent current signals can be maintained in the proposed multiple-valued current-mode (MVCM) circuit, which improves the robustness against the process variation. Moreover, as the supply-voltage and the temperature variations in smaller dimensions of circuit elements are dominated as the common-mode variation, a local reference voltage signal according to the variations can be adaptively generated to compensate characteristic change of the MVCM-circuit component. As a result, the proposed asynchronous on-chip communication link is correctly operated in the operation range from 1.1 V to 1.4 V of the supply voltage and that from -50 to 75 under the process variation of 3σ. In fact, it is demonstrated by HSPICE simulation in a 0.13-µm CMOS process that the throughput of the proposed circuit is enhanced to 435% in comparison with that of the conventional 4-phase asynchronous communication circuit under a comparable energy dissipation.

  • Energy-Aware Multiple-Valued Current-Mode Sequential Circuits Using a Completion-Detection Scheme

    Hirokatsu SHIRAHAMA  Takashi MATSUURA  Masanori NATSUI  Takahiro HANYU  

     
    PAPER-Multiple-Valued VLSI Technology

      Vol:
    E93-D No:8
      Page(s):
    2080-2088

    A multiple-valued current-mode (MVCM) circuit using current-flow control is proposed for a power-greedy sequential linear-array system. Whenever operation is completed in processing element (PE) at the present stage, every possible current source in the PE at the previous stage is cut off, which greatly reduces the wasted power dissipation due to steady current flows during standby states. The completion of the operation can be easily detected using "operation monitor" that observes input and output signals at latches, and that generates control signal immediately at the time completed. Since the wires of data and control signals are shared in the proposed MVCM circuit, no additional wires are required for current-flow control. In fact, it is demonstrated that the power consumption of the MVCM circuit using the proposed method is reduced to 53 percent in comparison with that without current-source control.

  • Logic-In-Control-Architecture-Based Reconfigurable VLSI Using Multiple-Valued Differential-Pair Circuits

    Nobuaki OKADA  Michitaka KAMEYAMA  

     
    PAPER-Application of Multiple-Valued VLSI

      Vol:
    E93-D No:8
      Page(s):
    2126-2133

    A fine-grain bit-serial multiple-valued reconfigurable VLSI based on logic-in-control architecture is proposed for effective use of the hardware resources. In logic-in-control architecture, the control circuits can be merged with the arithmetic/logic circuits, where the control and arithmetic/logic circuits are constructed by using one or multiple logic blocks. To implement the control circuit, only one state in a state transition diagram is allocated to one logic block, which leads to reduction of the complexity of interconnections between logic blocks. The fine-grain logic block is implemented based on multiple-valued current-mode circuit technology. In the fine-grain logic block, an arbitrary 3-variable binary function can be programmed by using one multiplexer and two universal literal circuits. Three-variable binary functions are used to implement the control circuit. Moreover, the hardware resources can be utilized to construct a bit-serial adder, because full-adder sum and carry can be realized by programming in the universal literal circuit. Therefore, the logic block can be effectively reconfigured for arithmetic/logic and control circuits. It is made clear that the hardware complexity of the control circuit in the proposed reconfigurable VLSI can be reduced in comparison with that of the control circuit based on a typically sequential circuit in the conventional FPGA and the fine-grain field-programmable VLSI reported until now.

  • Design of Wideband Linear Voltage-to-Current Converters

    Retdian NICODIMUS  Shigetaka TAKAGI  

     
    PAPER

      Vol:
    E93-A No:2
      Page(s):
    382-389

    This paper proposes a voltage-to-current converter with nested feedback loop configuration to achieve high loop gain without reducing the bandwidth. Simulation results using 0.18-µm CMOS process parameters show that the proposed circuit has a good linearity performance. The simulated bandwidth is 350 MHz. The THD improvement of the proposed circuit is more than 60 dB compared to the one of a common gate circuit under a same total current consumption of 10.4 mA.

  • A Methodology for the Design of MOS Current-Mode Logic Circuits

    Giuseppe CARUSO  Alessio MACCHIARELLA  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:2
      Page(s):
    172-181

    In this paper, a design methodology for the minimization of various performance metrics of MOS Current-Mode Logic (MCML) circuits is described. In particular, it allows to minimize the delay under a given power consumption, the power consumption under a given delay and the power-delay product. Design solutions can be evaluated graphically or by simple and effective automatic procedures implemented within the MATLAB environment. The methodology exploits the novel concepts of crossing-point current and crossing-point capacitance. A useful feature of it is that it provides the designer with useful insights into the dependence of the performance metrics on design variables and fan-out capacitance. The methodology was validated by designing several MCML circuits in an IBM 130 nm CMOS process.

  • A Low-Power K-Band CMOS Current-Mode Up-Conversion Mixer Integrated with VCO

    Wen-Chieh WANG  Chung-Yu WU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:10
      Page(s):
    1291-1298

    A low-power K-band CMOS current-mode up-conversion mixer is proposed. The proposed mixer is realized using four analog current-squaring circuits. This current-mode up-conversion mixer is fabricated in 0.13-µm 1P8M triple-well CMOS process, and has the measured power conversion gain of -5 dB. The fabricated CMOS up-conversion mixer dissipates only 3.1 mW from a 1-V supply voltage. The VCO can be tuned from 20.8 GHz to 22.7 GHz. Its phase noise is -108 dBc/Hz at 10-MHz offset frequency. It is shown that the proposed mixer has great potential for low-voltage and low-power CMOS transmitter front-ends in advanced nano-CMOS technologies.

  • High-Throughput Bit-Serial LDPC Decoder LSI Based on Multiple-Valued Asynchronous Interleaving

    Naoya ONIZAWA  Takahiro HANYU  Vincent C. GAUDET  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:6
      Page(s):
    867-874

    This paper presents a high-throughput bit-serial low-density parity-check (LDPC) decoder that uses an asynchronous interleaver. Since consecutive log-likelihood message values on the interleaver are similar, node computations are continuously performed by using the most recently arrived messages without significantly affecting bit-error rate (BER) performance. In the asynchronous interleaver, each message's arrival rate is based on the delay due to the wire length, so that the decoding throughput is not restricted by the worst-case latency, which results in a higher average rate of computation. Moreover, the use of a multiple-valued data representation makes it possible to multiplex control signals and data from mutual nodes, thus minimizing the number of handshaking steps in the asynchronous interleaver and eliminating the clock signal entirely. As a result, the decoding throughput becomes 1.3 times faster than that of a bit-serial synchronous decoder under a 90 nm CMOS technology, at a comparable BER.

1-20hit(82hit)