The search functionality is under construction.

Keyword Search Result

[Keyword] feedback(383hit)

1-20hit(383hit)

  • Efficient Realization of an SC Circuit with Feedback and Its Applications Open Access

    Yuto ARIMURA  Shigeru YAMASHITA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/10/26
      Vol:
    E107-A No:7
      Page(s):
    958-965

    Stochastic Computing (SC) allows additions and multiplications to be realized with lower power than the conventional binary operations if we admit some errors. However, for many complex functions which cannot be realized by only additions and multiplications, we do not know a generic efficient method to calculate a function by using an SC circuit; it is necessary to realize an SC circuit by using a generic method such as polynomial approximation methods for such a function, which may lose the advantage of SC. Thus, there have been many researches to consider efficient SC realization for specific functions; an efficient SC square root circuit with a feedback circuit was proposed by D. Wu et al. recently. This paper generalizes the SC square root circuit with a feedback circuit; we identify a situation when we can implement a function efficiently by an SC circuit with a feedback circuit. As examples of our generalization, we propose SC circuits to calculate the n-th root calculation and division. We also show our analysis on the accuracy of our SC circuits and the hardware costs; our results show the effectiveness of our method compared to the conventional SC designs; our framework may be able to implement a SC circuit that is better than the existing methods in terms of the hardware cost or the calculation error.

  • Secrecy Outage Probability and Secrecy Diversity Order of Alamouti STBC with Decision Feedback Detection over Time-Selective Fading Channels Open Access

    Gyulim KIM  Hoojin LEE  Xinrong LI  Seong Ho CHAE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:6
      Page(s):
    923-927

    This letter studies the secrecy outage probability (SOP) and the secrecy diversity order of Alamouti STBC with decision feedback (DF) detection over the time-selective fading channels. For given temporal correlations, we have derived the exact SOPs and their asymptotic approximations for all possible combinations of detection schemes including joint maximum likehood (JML), zero-forcing (ZF), and DF at Bob and Eve. We reveal that the SOP is mainly influenced by the detection scheme of the legitimate receiver rather than eavesdropper and the achievable secrecy diversity order converges to two and one for JML only at Bob (i.e., JML-JML/ZF/DF) and for the other cases (i.e., ZF-JML/ZF/DF, DF-JML/ZF/DF), respectively. Here, p-q combination pair indicates that Bob and Eve adopt the detection method p ∈ {JML, ZF, DF} and q ∈ {JML, ZF, DF}, respectively.

  • A Feedback Vertex Set-Based Approach to Simplifying Probabilistic Boolean Networks Open Access

    Koichi KOBAYASHI  

     
    PAPER

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:5
      Page(s):
    779-785

    A PBN is well known as a mathematical model of complex network systems such as gene regulatory networks. In Boolean networks, interactions between nodes (e.g., genes) are modeled by Boolean functions. In PBNs, Boolean functions are switched probabilistically. In this paper, for a PBN, a simplified representation that is effective in analysis and control is proposed. First, after a polynomial representation of a PBN is briefly explained, a simplified representation is derived. Here, the steady-state value of the expected value of the state is focused, and is characterized by a minimum feedback vertex set of an interaction graph expressing interactions between nodes. Next, using this representation, input selection and stabilization are discussed. Finally, the proposed method is demonstrated by a biological example.

  • Output Feedback Ultimate Boundedness Control with Decentralized Event-Triggering Open Access

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/11/10
      Vol:
    E107-A No:5
      Page(s):
    770-778

    In cyber-physical systems (CPSs) that interact between physical and information components, there are many sensors that are connected through a communication network. In such cases, the reduction of communication costs is important. Event-triggered control that the control input is updated only when the measured value is widely changed is well known as one of the control methods of CPSs. In this paper, we propose a design method of output feedback controllers with decentralized event-triggering mechanisms, where the notion of uniformly ultimate boundedness is utilized as a control specification. Using this notion, we can guarantee that the state stays within a certain set containing the origin after a certain time, which depends on the initial state. As a result, the number of times that the event occurs can be decreased. First, the design problem is formulated. Next, this problem is reduced to a BMI (bilinear matrix inequality) optimization problem, which can be solved by solving multiple LMI (linear matrix inequality) optimization problems. Finally, the effectiveness of the proposed method is presented by a numerical example.

  • An Academic Presentation Support System Utilizing Structural Elements Open Access

    Kazuma TAKAHASHI  Wen GU  Koichi OTA  Shinobu HASEGAWA  

     
    PAPER

      Pubricized:
    2023/12/27
      Vol:
    E107-D No:4
      Page(s):
    486-494

    In academic presentation, the structure design of presentation is critical for making the presentation logical and understandable. However, it is difficult for novice researchers to construct required academic presentation structure due to the flexibility in structure creation. To help novice researchers revise and improve their presentation structure, we propose an academic presentation structure modification support system based on structural elements of the presentation slides. In the proposed system, we build a presentation structural elements model (PSEM) that represents the essential structural elements and their relations to clarify the ideal structure of academic presentation. Based on the PSEM, we also designed two evaluation indices to evaluate the academic presentation structure. To evaluate the proposed system with real-world data, we construct a web application that generates evaluation and feedback to academic presentation slides. The experimental results demonstrate the effectiveness of the proposed system.

  • Introduction to Compressed Sensing with Python Open Access

    Masaaki NAGAHARA  

     
    INVITED PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/08/15
      Vol:
    E107-B No:1
      Page(s):
    126-138

    Compressed sensing is a rapidly growing research field in signal and image processing, machine learning, statistics, and systems control. In this survey paper, we provide a review of the theoretical foundations of compressed sensing and present state-of-the-art algorithms for solving the corresponding optimization problems. Additionally, we discuss several practical applications of compressed sensing, such as group testing, sparse system identification, and sparse feedback gain design, and demonstrate their effectiveness through Python programs. This survey paper aims to contribute to the advancement of compressed sensing research and its practical applications in various scientific disciplines.

  • FOM-CDS PUF: A Novel Configurable Dual State Strong PUF Based on Feedback Obfuscation Mechanism against Modeling Attacks

    Hong LI  Wenjun CAO  Chen WANG  Xinrui ZHU  Guisheng LIAO  Zhangqing HE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/29
      Vol:
    E106-A No:10
      Page(s):
    1311-1321

    The configurable Ring oscillator Physical unclonable function (CRO PUF) is the newly proposed strong PUF based on classic RO PUF, which can generate exponential Challenge-Response Pairs (CRPs) and has good uniqueness and reliability. However, existing proposals have low hardware utilization and vulnerability to modeling attacks. In this paper, we propose a Novel Configurable Dual State (CDS) PUF with lower overhead and higher resistance to modeling attacks. This structure can be flexibly transformed into RO PUF and TERO PUF in the same topology according to the parity of the Hamming Weight (HW) of the challenge, which can achieve 100% utilization of the inverters and improve the efficiency of hardware utilization. A feedback obfuscation mechanism (FOM) is also proposed, which uses the stable count value of the ring oscillator in the PUF as the updated mask to confuse and hide the original challenge, significantly improving the effect of resisting modeling attacks. The proposed FOM-CDS PUF is analyzed by building a mathematical model and finally implemented on Xilinx Artix-7 FPGA, the test results show that the FOM-CDS PUF can effectively resist several popular modeling attack methods and the prediction accuracy is below 60%. Meanwhile it shows that the FOM-CDS PUF has good performance with uniformity, Bit Error Rate at different temperatures, Bit Error Rate at different voltages and uniqueness of 53.68%, 7.91%, 5.64% and 50.33% respectively.

  • Polar Coding Aided by Adaptive Channel Equalization for Underwater Acoustic Communication

    Feng LIU  Qianqian WU  Conggai LI  Fangjiong CHEN  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2022/07/01
      Vol:
    E106-A No:1
      Page(s):
    83-87

    To improve the performance of underwater acoustic communications, this letter proposes a polar coding scheme with adaptive channel equalization, which can reduce the amount of feedback information. Furthermore, a hybrid automatic repeat request (HARQ) mechanism is provided to mitigate the impact of estimation errors. Simulation results show that the proposed scheme outperforms the turbo equalization in bit error rate. Computational complexity analysis is also provided for comparison.

  • Synchronous Sharing of Lecture Slides and Photo Messaging during Real-Time Online Classes

    Haeyoung LEE  

     
    LETTER-Educational Technology

      Pubricized:
    2022/04/21
      Vol:
    E105-D No:7
      Page(s):
    1348-1351

    This letter presents an innovative solution for real-time interaction during online classes. Synchronous sharing enables instructors to provide real-time feedback to students. This encourages students to stay focused and feel engaged during class. Consequently, students evaluated anonymously that this solution significantly enhanced their learning experience during real-time online classes.

  • LMI-Based Design of Output Feedback Controllers with Decentralized Event-Triggering

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2021/09/15
      Vol:
    E105-A No:5
      Page(s):
    816-822

    In this paper, event-triggered control over a sensor network is studied as one of the control methods of cyber-physical systems. Event-triggered control is a method that communications occur only when the measured value is widely changed. In the proposed method, by solving an LMI (Linear Matrix Inequality) feasibility problem, an event-triggered output feedback controller such that the closed-loop system is asymptotically stable is derived. First, the problem formulation is given. Next, the control problem is reduced to an LMI feasibility problem. Finally, the proposed method is demonstrated by a numerical example.

  • Stability Analysis and Control of Decision-Making of Miners in Blockchain

    Kosuke TODA  Naomi KUZE  Toshimitsu USHIO  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2021/10/01
      Vol:
    E105-A No:4
      Page(s):
    682-688

    To maintain blockchain-based services with ensuring its security, it is an important issue how to decide a mining reward so that the number of miners participating in the mining increases. We propose a dynamical model of decision-making for miners using an evolutionary game approach and analyze the stability of equilibrium points of the proposed model. The proposed model is described by the 1st-order differential equation. So, it is simple but its theoretical analysis gives an insight into the characteristics of the decision-making. Through the analysis of the equilibrium points, we show the transcritical bifurcations and hysteresis phenomena of the equilibrium points. We also design a controller that determines the mining reward based on the number of participating miners to stabilize the state where all miners participate in the mining. Numerical simulation shows that there is a trade-off in the choice of the design parameters.

  • Rectifier Circuit using High-Impedance Feedback Line for Microwave Wireless Power Transfer Systems Open Access

    Seiya MIZUNO  Ryosuke KASHIMURA  Tomohiro SEKI  Maki ARAI  Hiroshi OKAZAKI  Yasunori SUZUKI  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-C No:10
      Page(s):
    552-558

    Research on wireless power transmission technology is being actively conducted, and studies on spatial transmission methods such as SSPS are currently underway for applications such as power transfer to the upper part of steel towers and power transfer to flying objects such as drones. To enable such applications, it is necessary to examine the configuration of the power-transfer and power-receiving antennas and to improve the RF-DC conversion efficiency (hereinafter referred to as conversion efficiency) of the rectifier circuit on the power-receiving antenna. To improve the conversion efficiency, various methods that utilize full-wave rectification rather than half-wave rectification have been proposed. However, these come with problems such as a complicated circuit structure, the need for additional capacitors, the selection of components at high frequencies, and a reduction in mounting yield. In this paper, we propose a method to improve the conversion efficiency by loading a high-impedance microstrip line as a feedback line in part of the rectifier circuit. We analyzed a class-F rectifier circuit using circuit analysis software and found that the conversion efficiency of the conventional configuration was 54.2%, but the proposed configuration was 69.3%. We also analyzed a measuring circuit made with a discrete configuration in the 5.8-GHz band and found that the conversion efficiency was 74.7% at 24dBm input.

  • Frequency-Domain Iterative Block DFE Using Erasure Zones and Improved Parameter Estimation

    Jian-Yu PAN  Kuei-Chiang LAI  Yi-Ting LI  Szu-Lin SU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1159-1171

    Iterative block decision feedback equalization with hard-decision feedback (HD-IBDFE) was proposed for single-carrier transmission with frequency-domain equalization (SC-FDE). The detection performance hinges upon not only error propagation, but also the accuracy of estimating the parameters used to re-compute the equalizer coefficients at each iteration. In this paper, we use the erasure zone (EZ) to de-emphasize the feedback values when the hard decisions are not reliable. EZ use also enables a more accurate, and yet computationally more efficient, parameter estimation method than HD-IBDFE. We show that the resulting equalizer coefficients share the same mathematical form as that of the HD-IBDFE, thereby preserving the merit of not requiring matrix inverse operations in calculating the equalizer coefficients. Simulations show that, by using the EZ and the proposed parameter estimation method, a significant performance improvement over the conventional HD-IBDFE can be achieved, but with lower complexity.

  • Detection Algorithms for FBMC/OQAM Spatial Multiplexing Systems

    Kuei-Chiang LAI  Chi-Jen CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1172-1187

    In this paper, we address the problem of detector design in severely frequency-selective channels for spatial multiplexing systems that adopt filter bank multicarrier based on offset quadrature amplitude modulation (FBMC/OQAM) as the communication waveforms. We consider decision feedback equalizers (DFEs) that use multiple feedback filters to jointly cancel the post-cursor components of inter-symbol interference, inter-antenna interference, and, in some configuration, inter-subchannel interference. By exploiting the special structures of the correlation matrix and the staggered property of the FBMC/OQAM signals, we obtain an efficient method of computing the DFE coefficients that requires a smaller number of multiplications than the linear equalizer (LE) and conventional DFE do. The simulation results show that the proposed detectors considerably outperform the LE and conventional DFE at moderate-to-high signal-to-noise ratios.

  • QoE-Aware Stable Adaptive Video Streaming Using Proportional-Derivative Controller for MPEG-DASH Open Access

    Ryuta SAKAMOTO  Takahiro SHOBUDANI  Ryosuke HOTCHI  Ryogo KUBO  

     
    PAPER-Network

      Pubricized:
    2020/09/24
      Vol:
    E104-B No:3
      Page(s):
    286-294

    In video distribution services such as video streaming, the providers must satisfy the various quality demands of the users. One of the human-centric indexes used to assess video quality is the quality of experience (QoE). In video streaming, the video bitrate, video freezing time, and video bitrate switching are significant determiners of QoE. To provide high-quality video streaming services, adaptive streaming using the Moving Picture Experts Group dynamic adaptive streaming over Hypertext Transfer Protocol (MPEG-DASH) is widely utilized. One of the conventional bitrate selection methods for MPEG-DASH selects the bitrate such that the amount of buffered data in the playback buffer, i.e., the playback buffer level, can be maintained at a constant value. This method can avoid buffer overflow and video freezing based on feedback control; however, this method induces high-frequency video bitrate switching, which can degrade QoE. To overcome this issue, this paper proposes a bitrate selection method in an adaptive video steaming for MPEG-DASH to improve the QoE by minimizing the bitrate fluctuation. To this end, the proposed method does not change the bitrate if the playback buffer level is not around its upper or lower limit, corresponding to the full or empty state of the playback buffer, respectively. In particular, to avoid buffer overflow and video freezing, the proposed method selects the bitrate based on proportional-derivative (PD) control to maintain the playback buffer level at a target level, which corresponds to an upper or lower threshold of the playback buffer level. Simulations confirm that, the proposed method offers better QoE than the conventional method for users with various preferences.

  • Data-Aided SMI Algorithm Using Common Correlation Matrix for Adaptive Array Interference Suppression

    Kosuke SHIMA  Kazuki MARUTA  Chang-Jun AHN  

     
    PAPER-Digital Signal Processing

      Vol:
    E104-A No:2
      Page(s):
    404-411

    This paper proposes a novel weight derivation method to improve adaptive array interference suppression performance based on our previously conceived sample matrix inversion algorithm using common correlation matrix (CCM-SMI), by data-aided approach. In recent broadband wireless communication system such as orthogonal frequency division multiplexing (OFDM) which possesses lots of subcarriers, the computation complexity is serious problem when using SMI algorithm to suppress unknown interference. To resolve this problem, CCM based SMI algorithm was previously proposed. It computes the correlation matrix by the received time domain signals before fast Fourier transform (FFT). However, due to the limited number of pilot symbols, the estimated channel state information (CSI) is often incorrect. It leads limited interference suppression performance. In this paper, we newly employ a data-aided channel state estimation. Decision results of received symbols are obtained by CCM-SMI and then fed-back to the channel estimator. It assists improving CSI estimation accuracy. Computer simulation result reveals that our proposal accomplishes better bit error rate (BER) performance in spite of the minimum pilot symbols with a slight additional computation complexity.

  • Multi Modulus Signal Adaptation for Semi-Blind Uplink Interference Suppression on Multicell Massive MIMO Systems

    Kazuki MARUTA  Chang-Jun AHN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/08/18
      Vol:
    E104-B No:2
      Page(s):
    158-168

    This paper expands our previously proposed semi-blind uplink interference suppression scheme for multicell multiuser massive MIMO systems to support multi modulus signals. The original proposal applies the channel state information (CSI) aided blind adaptive array (BAA) interference suppression after the beamspace preprocessing and the decision feedback channel estimation (DFCE). BAA is based on the constant modulus algorithm (CMA) which can fully exploit the degree of freedom (DoF) of massive antenna arrays to suppress both inter-user interference (IUI) and inter-cell interference (ICI). Its effectiveness has been verified under the extensive pilot contamination constraint. Unfortunately, CMA basically works well only for constant envelope signals such as QPSK and thus the proposed scheme should be expanded to cover QAM signals for more general use. This paper proposes to apply the multi modulus algorithm (MMA) and the minimum mean square error weight derivation based on data-aided sample matrix inversion (MMSE-SMI). It can successfully realize interference suppression even with the use of multi-level envelope signals such as 16QAM with satisfactorily outage probability performance below the fifth percentile.

  • Robust Control of a Class of Nonlinear Systems in Presence of Uncertain Time-Varying Parameters Associated with Diagonal Terms via Output Feedback

    Sang-Young OH  Ho-Lim CHOI  

     
    PAPER-Systems and Control

      Pubricized:
    2020/07/08
      Vol:
    E104-A No:1
      Page(s):
    263-274

    In this paper, we propose a robust output feedback control method for nonlinear systems with uncertain time-varying parameters associated with diagonal terms and there are additional external disturbances. First, we provide a new practical guidance of obtaining a compact set which contains the allowed time-varying parameters by utilizing a Lyapunov equation and matrix inequalities. Then, we show that all system states and observer errors of the controlled system remain bounded by the proposed controller. Moreover, we show that the ultimate bounds of some system states and observer errors can be made (arbitrarily) small by adjusting a gain-scaling factor depending on the system nonlinearity. With an application example, we illustrate the effectiveness of our control scheme over the existing one.

  • A 32GHz 68dBΩ Low-Noise and Balance Operation Transimpedance Amplifier in 130nm SiGe BiCMOS for Optical Receivers

    Chao WANG  Xianliang LUO  Mohamed ATEF  Pan TANG  

     
    PAPER

      Vol:
    E103-A No:12
      Page(s):
    1408-1416

    In this paper, a balance operation Transimpedance Amplifier (TIA) with low-noise has been implemented for optical receivers in 130 nm SiGe BiCMOS Technology, in which the optimal tradeoff emitter current density and the location of high-frequency noise corner were analyzed for acquiring low-noise performance. The Auto-Zero Feedback Loop (AZFL) without introducing unnecessary noises at input of the TIA, the tail current sink with high symmetries and the balance operation TIA with the shared output of Operational Amplifier (OpAmp) in AZFL were designed to keep balanced operation for the TIA. Moreover, cascode and shunt-feedback were also employed to expanding bandwidth and decreasing input referred noise. Besides, the formula for calculating high-frequency noise corner in Heterojunction Bipolar Transistor (HBT) TIA with shunt-feedback was derived. The electrical measurement was performed to validate the notions described in this work, appearing 9.6 pA/√Hz of input referred noise current Power Spectral Density (PSD), balance operation (VIN1=896mV, VIN2=896mV, VOUT1=1.978V, VOUT2=1.979V), bandwidth of 32GHz, overall transimpedance gain of 68.6dBΩ, a total 117mW power consumption and chip area of 484µm × 486µm.

  • Design of ISM-Band High Power and High Efficiency Solid-State VCOs for Use in Next Generation Microwave Oven Open Access

    Hikaru IKEDA  Yasushi ITOH  

     
    INVITED PAPER-Electronic Circuits

      Pubricized:
    2020/03/19
      Vol:
    E103-C No:10
      Page(s):
    397-403

    Recently, intelligent heating, next generation microwave ovens that achieve uniform heating and spot heating using solid-state devices, has been actively studied. There are two types of microwave generators using solid-state devices. Since compactness is indispensable to accommodate in a limited space, the miniaturized oscillator type was selected. The authors proposed an imbalanced coupling resonator, a resonator-less feedback circuit, a high power frequency variable resonator, and injection-locked phase control in order to achieve high performance of the oscillator type microwave generator. In addition, we confirmed that the oscillator type can be used as the microwave generator for intelligent heating using a Wilkinson combiner. As a result, it was demonstrated that the oscillator type microwave generator, realized the same high efficiency (67%) as the amplifier type, and found the possibility of variable frequency (2.4 to 2.5GHz) and variable phase, and can be used as the microwave generator for intelligent heating.

1-20hit(383hit)