Rong WANG Changjun YU Zhe LYU Aijun LIU
To address the challenge of target signals being completely submerged by ionospheric clutter during typhoon passages, this letter proposes a chaotic detection method for target signals in the background of ionospheric noise under typhoon excitation. Experimental results demonstrate the effectiveness of the proposed method in detecting target signals with harmonic characteristics from strong ionospheric clutter during typhoon passages.
Di YAO Xin ZHANG Qiang YANG Weibo DENG
In small-aperture high frequency surface wave radar, the main-lobe clutter all can be seen as a more severe space spread clutter under the influence of the smaller array aperture. It compromises the detection performance of moving vessels, especially when the target is submerged in the clutter. To tackle this issue, an improved spread clutter estimated canceller, combining spread clutter estimated canceller, adaptive selection strategy of the optimal training samples and rotating spatial beam method, is presented to suppress main-lobe clutter in both angle domain and range domain. According to the experimental results, the proposed algorithm is shown to have far superior clutter suppression performance based on the real data.
Minoru FUJISHIMA Shuhei AMAKAWA Kyoya TAKANO Kosuke KATAYAMA Takeshi YOSHIDA
There have recently been more and more reports on CMOS integrated circuits operating at terahertz (≥ 0.1THz) frequencies. However, design environments and techniques are not as well established as for RF CMOS circuits. This paper reviews recent progress made by the authors in terahertz CMOS design for low-power and high-speed wireless communication, including device characterization and modeling techniques. Low-power high-speed wireless data transfer at 11Gb/s and 19pJ/bit and a 7-pJ/bit ultra-low-power transceiver chipset are presented.
Shan ZENG Wenjian YU Jin SHI Xianlong HONG Chung-Kuan CHENG
Inductive effect becomes important for on-chip global interconnects, like the power/ground (P/G) grid. Because of the locality property of partial reluctance, the inverse of partial inductance, the window-based partial reluctance extraction has been applied for large-scale interconnect structures. In this paper, an efficient method of partial reluctance extraction is proposed for large-scale regular P/G grid structures. With a block reuse technique, the proposed method makes full use of the structural regularity of the P/G grid. Numerical results demonstrate the proposed method is able to efficiently handle a P/G grid with up to one hundred thousands wire segments. It is several tens times faster than the window-based method, while generating accurate frequency-dependent partial reluctance and resistance.
Keiji GOTO Toru KAWANO Toyohiko ISHIHARA
We study the high-frequency asymptotic analysis methods for the scattered fields by a cylindrically curved conducting surface excited by the incident wave on the curved surface from the convex side. We first derive the novel hybrid ray-mode solution for the scattered fields near the concave surface by solving a canonical problem formulated under the assumption that the cylindrically curved conducting surface possesses only one edge. Then by applying the ray tracing technique and the idea of Keller's GTD (Geometrical Theory of Diffraction), the solutions derived for the canonical problem are extended to account for the problem of the radiation from and the scattering by the other edge of the cylindrically curved surface. We confirm the validity of the novel asymptotic representations proposed in the present study by comparing both with the numerical results obtained from the method of moment and the experimental results performed in the anechoic chamber.
A LC oscillator based upon the quadrature magnetic coupling to generate a mutual negative resistance (mu-R) is introduced. The topology offers enhanced optimum phase noise at low supply voltages by enabling extended circuit operation in the current-limited regime through the control of its mutual inductors' coupling factor, k. The principal operation of the mu-R oscillator is described and its comparison with the popular cross-coupled topology is discussed. The capability of the technique is demonstrated via design examples of 1.8 GHz oscillators. Simulations show that, by employing inductors with a self-inductance of 2 nH, a quality factor of about 7.5 and a coupling k=0.52, the mu-R oscillator exhibits the minimum phase noise of -142 dBc/Hz at 3 MHz-offset with 18 mA bias current and 2 V supply. This is 3-dB more than the minimum achievable phase noise in the cross-coupled oscillator with identical component parameters and supply voltage level.
Yasushi DODA Iwao KAWAYAMA Hironaru MURAKAMI Masayoshi TONOUCHI
We fabricated Josephson vortex flow transistors (JVFTs) with a parallel array of Josephson junctions that were prepared using c-axis-oriented 100-nm-thick YBa2Cu3O7-δ (YBCO) thin films grown on 24bicrystal MgO (100) substrates. We observed clear modulations of the critical current and the flow voltage with DC current input to the control line that was inductively coupled to the array of junctions. From the results, we estimated the parameters of the device, e.g., the mutual inductance and the self-inductance, and calculated the operation frequency at which the device potentially exhibited these parameters. Moreover, the current gain and the transresistance were evaluated and found to be 0.5 and 0.15 Ω, respectively. In addition, we observed the high-frequency responses of the JVFT to the input AC current of the sine wave or the square pulse wave. A clear oscillation of the output voltage could be observed with a 1 MHz sine wave and 250 kHz square pulse wave. We also discussed the feasibility of higher frequency operation by using it as an input interface for a single flux quantum (SFQ) logic circuit.
Sergey MOISEEV Koji SOSHIN Mutsuo NAKAOKA
In this paper, a novel type of the step-up high frequency transformer linked full-bridge soft-switching phase-shift PWM DC-DC power converter with ZVS and ZCS bridge legs is proposed for small scale fuel cell power generation systems, automotive AC power supplies. A tapped inductor filter with a freewheeling diode is implemented in the proposed soft-switching DC-DC power converter to minimize the circulating current in the high-frequency step-up transformer primary side and high-frequency inverter stage. Using a tapped inductor filter with a freewheeling diode makes possible to reduce the circulating current without any active switches and theirs gate-drive circuits. The operating principle of the proposed DC-DC power converter with each operation mode during a half cycle of the steady state operation is explained. The optimum design of the tapped inductor turns ratio is described on the basis of the circuit simulation results. Developing 1 kW 100 kHz prototype with power MOSFETs and 36 V DC source verifies the practical effectiveness of the proposed soft-switching DC-DC power converter. The actual efficiency of the proposed DC-DC power converter is obtained 94% for the wide load and output voltage variation ranges.
Teruhiko IDA Toyohiko ISHIHARA
Novel high-frequency asymptotic solutions for the scattered fields by a dielectric circular cylinder with a radius of curvature sufficiently larger than the wavelength are presented in this paper. We shall derive the modified UTD (uniform Geometrical Theory of Diffraction) solution, which is applicable in the transition regions near the geometrical boundaries produced by the incident ray on the dielectric cylinder from the tangential direction. Also derived are the uniform geometrical ray solutions applicable near the geometrical boundaries and near the caustics produced by the ray family reflected on the internal concave boundary of the dielectric cylinder. The validity and the utility of the uniform solutions are confirmed by comparing with the exact solution obtained from the eigenfuction expansion.
Kun-Ming CHEN Guo-Wei HUANG Li-Hsin CHANG Hua-Chou TSENG Tsun-Lai HSU
High-frequency characteristics of SiGe heterojunction bipolar transistors with different emitter sizes are studied based on pulsed measurements. Because the self-heating effect in transistors will enhance the Kirk effect, as the devices operate in high current region, the measured cutoff frequency and maximum oscillation frequency decrease with measurement time in the pulsed duration. By analyzing the equivalent small-signal device parameters, we know the reduction of cutoff frequency and maximum oscillation frequency is attributed to the reduction of transconductance and the increase of junction capacitances for fixed base-emitter voltage, while it is only attributed to the degradation of transconductance for fixed collector current. Besides, the degradation of high-frequency performance due to self-heating effect would be improved with the layout design combining narrow emitter finger and parallel-interconnected subcells structure.
Effects of high-frequency cyclic input and noise on interspike intervals in the coupled Bonhoeffer-van der Pol (BVP) model are studied with computer simulation. When two BVP elements are weakly coupled and cyclic input or noise is added to the first element, the interspike intervals of the second element decrease non-monotonically as the amplitude of the input increases. Further, complicated bifurcations in the interspike intervals are caused by cyclic input in the coupled BVP model in the oscillating state. Effects of the coupling on small rotations due to noise and the interruption of oscillations due to cyclic input, which occur when the equilibrium point is close to the critical point, are also studied. The non-monotonic changes and bifurcations in the interspike intervals are attributed to the phase locking of the coupled elements.
Nobuyuki ITOH Tatsuya OHGURO Kazuhiro KATOH Hideki KIMIJIMA Shin-ichiro ISHIZUKA Kenji KOJIMA Hiroyuki MIYAKAWA
A scalable MOSFET parasitic model has been studied using 0.13 µm standard CMOS process. The model consisted of a core BSIM3v3 transistor model and parasitic resistor, capacitor, inductor, and diode. All parasitic components' values were automatically calculated by transistor geometrical parameters, only gate length (Lg), gate width (Wg), and gate multiple numbers (Mg), and some fixed process parameters such as sheet resistance of each part of diffusion layer. This model was confirmed for 0.25 µm to 0.5 µm gate length, 10 to 40 gate multiples with 5 µm gate finger width (Wf), 0.8 V to 1.5 V gate-source voltage (|Vgs|) with 0.6 V threshold voltage (|Vth|), and 1.0 V to 2.5 V drain-source voltage (|Vds|) from the viewpoint of small signal. The measured s-parameter and simulated one are in fairly good agreement in 200 MHz to 20 GHz frequencies range. This model is very simple, scalable, and convenient for RF circuit designers without difficult parameter setting.
Junpei YAMAUCHI Tetsuya SHIMAMURA
This paper presents an improved spectral subtraction method for speech enhancement. A new noise estimation method is derived in which the noise is assumed to be white. By using the property that a white noise spectrum is flat, high frequency components of a noisy speech spectrum are averaged and the standard deviation of the noise is estimated. This operation is performed in the analysis segment, thus the spectral subtraction method combined with the new noise estimation method does not need non-speech segments and as a result can adapt to non-stationary noise conditions. The effectiveness of the proposed spectral subtraction method is confirmed by experiments.
Hiroyuki OGIWARA Mutsuo NAKAOKA
This paper describes the circuit design procedure of the zero-current soft switching (ZCS) high frequency inverter for induction heating uses. Its output power can be regulated from its maximum to minimum by the instantaneous current vector control scheme using phase shift control between switching units at a fixed frequency. In addition, it can be safely operated since no extraordinarily high voltage or current results even at a short-circuit period at the load. Also, its overall efficiency reaches 90%. The detailed load and frequency characteristics of the inverter are elucidated by the computer-aided simulation. Then, the circuit design procedure is presented, and practical numerical examples are obtained according to this procedure which reveal that the inverter is highly practical and the design procedure is effective. The trial inverters yielding 2 kW or 4 kW were actually prepared. The observed values of the voltages and currents of the inverters were found to be in good agreement with the calculated ones. These facts certificate the validity of the proposed design procedure.
Yukihiro FUKUMOTO Yasuo TAKAHATA Osami WADA Yoshitaka TOYOTA Takuya MIYASHITA Ryuji KOGA
This paper investigates a device model of the power current used for an LSI/IC. The model is proposed to analyze the power bus noise in digital circuit boards. This model is defined in the frequency domain and constructed with an equivalent internal impedance and an equivalent internal current source. Accordingly, the output current of the model is affected by power bus impedance, such as the capacitance of bypass capacitors and the parasitic inductance of power bus wiring. Therefore, the model is useful for analyzing the effectiveness of bypass capacitors and power bus wiring. The structure of equivalent internal impedance for a simple logic IC, such as 74HCXX, can be represented as an RLC series circuit. These parameters are identified by applying the least square method. To demonstrate the validity of the model, an experimental study was conducted. As a result, it was shown that the output current of the model corresponds to the measured current under a variety of power bus impedance levels within 6 dB.
This paper reviews analog-circuit researches in the 1990's especially from an academic-side point of view with the aim of pursuing what becomes important in the 21st century. To achieve this aim a large number of articles are surveyed and more than 200 are listed in References.
Sang-Jae KIM Tsutomu YAMASHITA
We investigate the basic properties of focused electron beam (FEB)-damaged Josephson junctions on silicon (Si) substrates for high-frequency device applications. YBa2Cu3O7-y (YBCO) Josephson junction arrays were also fabricated by FEB irradiation to confirm the junction uniformity and to investigate their applicability. The junctions exhibit resistively shunted junction (RSJ)-like current-voltage (I-V) curves and the microwave-induced Shapiro steps for all operation temperatures. Two-junction arrays show single-junction-like behavior with the Shapiro steps in an array up to 2 mV. Microwave-induced Shapiro steps correspond to the double voltages Vn=2nVJ, where VJ=f0h/2e in two-junction arrays. The microwave power dependence of I-V curves shows the steps corresponding to the RSJ model.
Andrey V. OSIPOV Hirokazu KOBAYASHI Kohei HONGO
A correction of the physical optics approximation by accounting for the presence of specific currents concentrated near shadow boundaries on the surface of a convex non-metallic scatterer is analysed by considering a canonical problem of diffraction of a plane electromagnetic wave incident normally to the axis of an infinite circular cylinder with impedance boundary conditions. The analysis focuses on the development of Fock-type asymptotic representations for magnetic field tangent components on the surface of the scatterer. The Fock-type representation of the surface field is uniformly valid within the penumbra region, providing a continuous transition from the geometrical optics formulas on the lit portion of the surface to the creeping waves approximation in the deep shadow region. A new numerical procedure for evaluating Fock-type integrals is proposed that extracts rapidly varying factors and approximates the rest, slowly varying coefficients via interpolation. This allows us to obtain accurate and simple representations for the shadow boundary currents that can be directly inserted into the radiation integral and effectively integrated. We show that accounting for the shadow boundary currents considerably improves the traditional PO analysis of the high-frequency electromagnetic fields scattered from smooth and convex non-metallic obstacles, particularly near the forward scattering direction.
Roberto TIBERIO Stefano MACI Alberto TOCCAFONDI
In this paper, a quite general systematic procedure is presented for defining incremental field contributions, that may provide effective tools for describing a wide class of scattering and diffraction phenomena at any aspect, whthin a unitary, self-consistent framework. This is based on a generalization of the localization process for cylindrical canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution may also be represented as a spatial integral convolution along the axis of the cylinder. Its integrand is then directly used to define the relevant incremental field contribution. This procedure, that will be referred to as a ITD (Incremental Theory of Diffraction) Fourier transform convolution localization process, is explicitly applied to both wedge and circular cylinder canonical configurations, to define incremental diffiraction and scattering contributions, respectively. These formulations are asymptotically approximated to find closed form high-frequency expression for the incremental field contributions. This generalization of the ITD lacalization process may provide a quite general, systematic procedure to find incremental field contributions that explicitly satisfy reciprocity and naturally lead to the UTD ray field representation, when it is applicable.
Yevgeny V.MAMONTOV Magnus WILLANDER
This work presents a further development of the approach to modelling thermal (i.e. carrier-velocity-fluctuation) noise in semiconductor devices proposed in papers by the present authors. The basic idea of the approach is to apply classical theory of Ito's stochastic differential equations (SDEs) and stochastic diffusion processes to describe noise in devices and circuits. This innovative combination enables to form consistent mathematical basis of the noise research and involve a great variety of results and methods of the well-known mathematical theory in device/circuit design. The above combination also makes our approach completely different, on the one hand, from standard engineering formulae which are not associated with any consistent mathematical modelling and, on the other hand, from the treatments in theoretical physics which are not aimed at device/circuit models and design. (Both these directions are discussed in more detail in Sect. 1). The present work considers the bipolar transistor compact model derived in Ref. [2] according to theory of Ito's SDEs and stochastic diffusion processes (including celebrated Kolmogorov's equations). It is shown that the compact model is transformed into the Ito SDE system. An iterative method to determine noisy currents as entries of the stationary stochastic process corresponding to the above Ito system is proposed.