The search functionality is under construction.

Keyword Search Result

[Keyword] high-speed(175hit)

1-20hit(175hit)

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • High Performance Network Virtualization Architecture on FPGA SmartNIC

    Ke WANG  Yiwei CHANG  Zhichuan GUO  

     
    PAPER-Network System

      Pubricized:
    2022/11/29
      Vol:
    E106-B No:6
      Page(s):
    500-508

    Network Functional Virtualization (NFV) is a high-performance network interconnection technology that allows access to traditional network transport devices through virtual network links. It is widely used in cloud computing and other high-concurrent access environments. However, there is a long delay in the introduction of software NFV solutions. Other hardware I/O virtualization solutions don't scale very well. Therefore, this paper proposes a virtualization implementation method on 100Gbps high-speed Field Programmable Gate Array (FPGA) network accelerator card, which uses FPGA accelerator to improve the performance of virtual network devices. This method uses the single root I/O virtualization (SR-IOV) technology to allow 256 virtual links to be created for a single Peripheral Component Interconnect express (PCIe) device. And it supports data transfer with virtual machine (VM) in the way of Peripheral Component Interconnect (PCI) passthrough. In addition, the design also adopts the shared extensible queue management mechanism, which supports the flexible allocation of more than 10,000 queues on virtual machines, and ensures the good isolation performance in the data path and control path. The design provides high-bandwidth transmission performance of more than 90Gbps for the entire network system, meeting the performance requirements of hyperscale cloud computing clusters.

  • A COM Based High Speed Serial Link Optimization Using Machine Learning Open Access

    Yan WANG  Qingsheng HU  

     
    PAPER

      Pubricized:
    2022/05/09
      Vol:
    E105-C No:11
      Page(s):
    684-691

    This paper presents a channel operating margin (COM) based high-speed serial link optimization using machine learning (ML). COM that is proposed for evaluating serial link is calculated at first and during the calculation several important equalization parameters corresponding to the best configuration are extracted which can be used for the ML modeling of serial link. Then a deep neural network containing hidden layers are investigated to model a whole serial link equalization including transmitter feed forward equalizer (FFE), receiver continuous time linear equalizer (CTLE) and decision feedback equalizer (DFE). By training, validating and testing a lot of samples that meet the COM specification of 400GAUI-8 C2C, an effective ML model is generated and the maximum relative error is only 0.1 compared with computation results. At last 3 link configurations are discussed from the view of tradeoff between the link performance and cost, illustrating that our COM based ML modeling method can be applied to advanced serial link design for NRZ, PAM4 or even other higher level pulse amplitude modulation signal.

  • A Low-Power High-Speed Sensing Scheme for Single-Ended SRAM

    Dashan SHI  Heng YOU  Jia YUAN  Yulian WANG  Shushan QIAO  

     
    PAPER-Integrated Electronics

      Pubricized:
    2022/05/06
      Vol:
    E105-C No:11
      Page(s):
    712-719

    In this paper, a reference-voltage self-selected pseudo-differential sensing scheme suitable for single-ended SRAM is proposed. The proposed sensing scheme can select different reference voltage according to the offset direction. With the employment of the new sensing scheme, the swing of the read bit-line in the read operation is reduced by 74.6% and 45.5% compared to the conventional domino and the pseudo-differential sense amplifier sensing scheme, respectively. Therefore, the delay and power consumption of the read operation are significantly improved. Simulation results based on a standard 55nm CMOS show that compared with the conventional domino and pseudo-differential sensing schemes, the sensing delay is improved by 66.4% and 47.7%, and the power consumption is improved by 31.4% and 22.5%, respectively. Although the area of the sensing scheme is increased by 50.8% compared with the pseudo-differential sense amplifier sensing scheme, it has little effect on the entire SRAM area.

  • Observation of Arc Discharges Occurring between Commutator and Brush Simulating a DC Motor by Means of a High-Speed Camera

    Ryosuke SANO  Junya SEKIKAWA  

     
    PAPER

      Pubricized:
    2021/06/09
      Vol:
    E104-C No:12
      Page(s):
    673-680

    Observed results of arc discharges generated between the brush and commutator are reported. The motion of the arc discharges was observed by a high-speed camera. The brush and commutator were installed to an experimental device that simulated the rotational motion of a real DC motor. The aim of this paper is to investigate the occurring position, dimensions, and moving characteristics of the arc discharges by means of high-speed imaging. Time evolutions of the arc voltage and current were measured, simultaneously. The arc discharges were generated when an inductive circuit was interrupted. Circuit current before interruption was 4A. The metal graphite or graphite brush and a copper commutator were used. Following results were obtained. The arc discharge was dragged on the brush surface and the arc discharge was sticking to the side surface of the commutator. The positions of the arc spots were on the end of the commutator and the center of the brush in rotational direction. The dimensions of the arc discharge were about 0.2 mm in length and about 0.3 mm in width. The averaged arc voltage during arc duration became higher and the light emission from the arc discharge became brighter, as the copper content of the cathode decreased.

  • Dependence of Arc Duration and Contact Gap at Arc Extinction of Break Arcs Occurring in a 48VDC/10A-300A Resistive Circuit on Contact Opening Speed

    Haruko YAZAKI  Junya SEKIKAWA  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2021/04/01
      Vol:
    E104-C No:11
      Page(s):
    656-662

    Dependences of arc duration D and contact gap at arc extinction d on contact opening speed v are studied for break arcs generated in a 48VDC resistive circuit at constant contact opening speeds. The opening speed v is varied over a wide range from 0.05 to 0.5m/s. Circuit current while electrical contacts are closed I0 is varied to 10A, 20A, 50A, 100A, 200A, and 300A. The following results were obtained. For each current I0, the arc duration D decreased with increasing contact opening speed v. However, the D at I0=300A was shorter than that at I0=200A. On the other hand, the contact gap at arc extinction d tended to increase with increasing the I0. However, the d at I0=300A was shorter than that at I0=200A. The d was almost constant with increasing the v for each current I0 when the I0 was lower than 200A. However, the d became shorter when the v was slower at I0=200A and 300A. At the v=0.05m/s, for example, the d at I0=300A was shorter than that at I0=100A. To explain the cause of the results of the d, in addition, arc length just before extinction L were analyzed. The L tended to increase with increasing current I0. The L was almost constant with increasing the v when the I0 was lower than 200A. However, when I0=200A and 300A, the L tended to become longer when the v was slower. The characteristics of the d will be discussed using the analyzed results of the L and motion of break arcs. At higher currents at I0=200A and 300A, the shorter d at the slowest v was caused by wide motion of the arc spots on contact surfaces and larger deformation of break arcs.

  • A High-Speed PWM-Modulated Transceiver Network for Closed-Loop Channel Topology

    Kyongsu LEE  Jae-Yoon SIM  

     
    BRIEF PAPER

      Pubricized:
    2020/12/18
      Vol:
    E104-C No:7
      Page(s):
    350-354

    This paper proposes a pulse-width modulated (PWM) signaling[1] to send clock and data over a pair of channels for in-vehicle network where a closed chain of point-to-point (P2P) interconnection between electronic control units (ECU) has been established. To improve detection speed and margin of proposed receiver, we also proposed a novel clock and data recovery (CDR) scheme with 0.5 unit-interval (UI) tuning range and a PWM generator utilizing 10 equally-spaced phases. The feasibility of proposed system has been proved by successfully detecting 1.25 Gb/s data delivered via 3 ECUs and inter-channels in 180 nm CMOS technology. Compared to previous study, the proposed system achieved better efficiency in terms of power, cost, and reliability.

  • Characterization of Multi-Layer Ceramic Chip Capacitors up to mm-Wave Frequencies for High-Speed Digital Signal Coupling Open Access

    Tsugumichi SHIBATA  Yoshito KATO  

     
    PAPER

      Pubricized:
    2020/04/09
      Vol:
    E103-C No:11
      Page(s):
    575-581

    Capacitive coupling of line coded and DC-balanced digital signals is often used to eliminate steady bias current flow between the systems or components in various communication systems. A multi-layer ceramic chip capacitor is promising for the capacitor of very broadband signal coupling because of its high frequency characteristics expected from the downsizing of the chip recent years. The lower limit of the coupling bandwidth is determined by the capacitance while the higher limit is affected by the parasitic inductance associated with the chip structure. In this paper, we investigate the coupling characteristics up to millimeter wave frequencies by the measurement and simulations. A phenomenon has been found in which the change in the current distribution in the chip structure occur at high frequencies and the coupling characteristics are improved compared to the prediction based on the conventional equivalent circuit model. A new equivalent circuit model of chip capacitor that can express the effect of the improvement has been proposed.

  • A 2.5Gbps Transceiver and Channel Architecture for High-Speed Automotive Communication System

    Kyongsu LEE  Jae-Yoon SIM  

     
    BRIEF PAPER-Integrated Electronics

      Vol:
    E102-C No:10
      Page(s):
    766-769

    In this paper, a new transceiver system for the in-vehicle communication system is proposed to enhance data transmission rate and timing accuracy in TDM-based application. The proposed system utilizes point-to-point (P2P) channel, a closed-loop clock forwarding path, and a transceiver with a repeater and clock delay adjuster. The proposed system with 4 ECU (Electronic Computing Unit) nodes is implemented in 180nm CMOS technology and, when compared with conventional bus-based system, achieved more than 125 times faster data transmission. The maximum data rate was 2.5Gbps at 1.8V power supply and the worst peak-to-peak jitter for the data and clock signals over 5000 data symbols were about 49.6ps and 9.8ps respectively.

  • High Speed Mobility Experiments on Distributed MIMO Beamforming for 5G Radio Access in 28-GHz Band

    Daisuke KITAYAMA  Kiichi TATEISHI  Daisuke KURITA  Atsushi HARADA  Minoru INOMATA  Tetsuro IMAI  Yoshihisa KISHIYAMA  Hideshi MURAI  Shoji ITOH  Arne SIMONSSON  Peter ÖKVIST  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1418-1426

    This paper describes the results of outdoor mobility measurements and high-speed vehicle tests that clarify the 4-by-8 multiple-input multiple-output (MIMO) throughput performance when applying distributed MIMO with narrow antenna-beam tracking in a 28-GHz frequency band in the downlink of a 5G cellular radio access system. To clarify suitable transmission point (TP) deployment for mobile stations (MS) moving at high speed, we examine two arrangements for 3TPs. The first sets all TPs in a line along the same side of the path traversed by the MS, and the other sets one TP on the other side of the path. The experiments in which the MS is installed on a moving wagon reveal that the latter deployment case enables a high peak data rate and high average throughput performance exhibiting the peak throughput of 15Gbps at the vehicle speed of 3km/h. Setting the MS in a vehicle travelling at 30km/h yielded the peak throughput of 13Gbps. The peak throughput of 11Gbps is achieved at the vehicle speed of 100km/h, and beam tracking and intra-baseband unit hand over operation are successfully demonstrated even at this high vehicle speed.

  • Investigation of Time Evolution of Length of Break Arcs Occurring in a 48VDC/50-300A Resistive Circuit

    Kenshi HAMAMOTO  Junya SEKIKAWA  

     
    BRIEF PAPER-Electromechanical Devices and Components

      Vol:
    E102-C No:5
      Page(s):
    424-427

    Break arcs are generated in a 48VDC resistive circuit. Circuit current I0 when electrical contacts are closed is changed from 50A to 300A. The break arcs are observed by a high-speed camera with appropriate settings of exposure from horizontal direction. Length of the break arcs L is measured from images of the break arcs. Time evolutions of the length L and gap voltage Vg are investigated. The following results are obtained. By appropriate settings of the high-speed camera, the time evolution of the length L is obtained from just after ignition to before arc extinction. Tendency of increase of the length L is similar to that of increase of the voltage Vg for each current I0.

  • A Configurable Hardware Word Re-Ordering Block for Multi-Lane Communication Protocols: Design and Use Case Open Access

    Pietro NANNIPIERI  Gianmarco DINELLI  Luca FANUCCI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:5
      Page(s):
    747-749

    Data rate requirements, from consumer application to automotive and aerospace grew rapidly in the last years. This led to the development of a series of communication protocols (i.e. Ethernet, PCI-Express, RapidIO and SpaceFibre), which use more than one communication lane, both to speed up data rate and to increase link reliability. Some of these protocols, such as SpaceFibre, are able to detect real-time changes in the number of active lanes and to adapt the data flow appropriately, providing a flexible solution, robust to lane failures. This results in a real time varying data path in the lower layers of the data handling system. The aim of this paper is to propose the architecture of a hardware block capable of reading a fixed number of words from a host FIFO and shaping them on a real time variable number of words equal to the number of active lanes.

  • Design and Analysis of A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier

    Tongxin YANG  Tomoaki UKEZONO  Toshinori SATO  

     
    PAPER

      Vol:
    E101-A No:12
      Page(s):
    2244-2253

    Multiplication is a key fundamental function for many error-tolerant applications. Approximate multiplication is considered to be an efficient technique for trading off energy against performance and accuracy. This paper proposes an accuracy-controllable multiplier whose final product is generated by a carry-maskable adder. The proposed scheme can dynamically select the length of the carry propagation to satisfy the accuracy requirements flexibly. The partial product tree of the multiplier is approximated by the proposed tree compressor. An 8×8 multiplier design is implemented by employing the carry-maskable adder and the compressor. Compared with a conventional Wallace tree multiplier, the proposed multiplier reduced power consumption by between 47.3% and 56.2% and critical path delay by between 29.9% and 60.5%, depending on the required accuracy. Its silicon area was also 44.6% smaller. In addition, results from two image processing applications demonstrate that the quality of the processed images can be controlled by the proposed multiplier design.

  • Extending Distributed-Based Transversal Filter Method to Spectral Amplitude Encoded CDMA

    Jorge AGUILAR-TORRENTERA  Gerardo GARCÍA-SÁNCHEZ  Ramón RODRÍGUEZ-CRUZ  Izzat Z. DARWAZEH  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:12
      Page(s):
    953-962

    In this paper, the analog code modulation characteristics of distributed-based transversal filters (DTFs) suitable for use in spectrally encoded CDMA systems are presented. The DTF is verified as an appropriate method to use in high-speed CDMA systems as opposed to previously proposed methods, which are intended for Direct Sequence (DS) CDMA systems. The large degree of freedom of DTF design permits controlling the filter pulse response to generate well specified temporal phase-coded signals. A decoder structure that performs bipolar detection of user subbands giving rise to a Spectral-Amplitude Encoded CDMA system is considered. Practical implementations require truncating the spreading signals by a time window of duration equal to the span time of the tapped delay line. Filter functions are chosen to demodulate the matched channel and achieve improved user interference rejection avoiding the need for transversal filters featuring a large number of taps. As a proof-of-concept of the electronic SAE scheme, practical circuit designs are developed at low speeds (3-dB point at 1 GHz) demonstrating the viability of the proposal.

  • A 7GS/s Complete-DDFS-Solution in 65nm CMOS

    Abdel MARTINEZ ALONSO  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    206-217

    A 7GS/s complete-DDFS-solution featuring a two-times interleaved RDAC with 1.2Vpp-diff output swing was fabricated in 65nm CMOS. The frequency tuning and amplitude resolutions are 24-bits and 10-bits respectively. The RDAC includes a mixed-signal, high-speed architecture for random swapping thermometer coding dynamic element matching that improves the narrowband SFDR up to 8dB for output frequencies below 1.85GHz. The proposed techniques enable a 7 GS/s operation with a spurious-free dynamic range better than 32dBc over the full Nyquist bandwidth. The worst case narrowband SFDR is 42dBc. This system consumes 87.9mW/(GS/s) from a 1.2V power supply when the RSTC-DEM method is enabled, resulting in a FoM of 458.9GS/s·2(SFDR/6)/W. A proof-of-concept chip with an active area of only 0.22mm2 was measured in prototypes encapsulated in a 144-pins low profile quad flat package.

  • Pipelined Squarer for Unsigned Integers of Up to 12 Bits

    Seongjin CHOI  Hyeong-Cheol OH  

     
    LETTER-Computer System

      Pubricized:
    2017/12/06
      Vol:
    E101-D No:3
      Page(s):
    795-798

    This paper proposes and analyzes a pipelining scheme for a hardware squarer that can square unsigned integers of up to 12 bits. Each stage is designed and adjusted such that stage delays are well balanced and that the critical path delay of the design does not exceed the reference value which is set up based on the analysis. The resultant design has the critical path delay of approximately 3.5 times a full-adder delay. In an implementation using an Intel Stratix V FPGA, the design operates at approximately 23% higher frequency than the comparable pipelined squarer provided in the Intel library.

  • Effect of Magnetic Blow-Out and Air Flow on Break Arcs Occurring between Silver Electrical Contacts with Copper Runners

    Haruki MIYAGAWA  Junya SEKIKAWA  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    709-715

    Arc runners are fixed on silver electrical contacts. Break arcs are generated between the contacts in a 450VDC circuit. Break arcs are magnetically blown-out and air is blown to the break arcs. The air flow was not used to our previous reports with runners. Circuit current when contacts are closed is 10A. Flow rate of air Q is changed from 1 to 10L/min. Supply voltage E is changed from 200V to 450V. The following results are shown. Arc duration D tends to decrease with increasing flow rate Q. The number of reignitions N increases with increasing supply voltage E for each flow rate Q. The number of reignitions is the least when the flow rate Q is 2L/min.

  • Analysis of Rotational Motion of Break Arcs Rotated by Radial Magnetic Field in a 48VDC Resistive Circuit

    Jun MATSUOKA  Junya SEKIKAWA  

     
    BRIEF PAPER

      Vol:
    E100-C No:9
      Page(s):
    732-735

    Break arcs are rotated with a radial magnetic field formed by a permanent magnet embedded in a fixed contact. The break arcs are generated in a 48VDC resistive circuit. The circuit current is 10A when the contacts are closed. The polarity of the fixed contact in which the magnet is embedded is changed. The rotational radius and the difference of position between the cathode and anode spots are investigated. The following results are obtained. The cathode spot is moved more easily than the anode spot by the radial magnetic field. The rotational radius of the break arcs is affected by the Lorentz force that is caused by the circumferential component of the arc current and the axial component of the magnetic field. The circumferential component of the arc current is caused by the difference of the positions of the rotating cathode and anode spots.

  • Optical Transmission Systems Toward Longer Reach and Larger Capacity Open Access

    Kazuo HAGIMOTO  

     
    INVITED PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1696-1706

    This paper reviews long optical reach and large capacity transmission which has become possible because of the application of wide-band and low-noise optical fiber amplifiers and digital coherent signal processing. The device structure and mechanism together with their significance are discussed.

  • Double-Rate Tomlinson-Harashima Precoding for Multi-Valued Data Transmission

    Yosuke IIJIMA  Yasushi YUMINAKA  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1611-1617

    The growing demand for high-speed data communication has continued to meet the need for ever-increasing I/O bandwidth in recent VLSI systems. However, signal integrity issues, such as intersymbol interference (ISI) and reflections, make the channel band-limited at high-speed data rates. We propose high-speed data transmission techniques for VLSI systems using Tomlinson-Harashima precoding (THP). Because THP can eliminate ISI by inverting the characteristics of channels with limited peak and average power at the transmitter, it is suitable for implementing advanced low-voltage and high-speed VLSI systems. This paper presents a novel double-rate THP equalization technique especially intended for multi-valued data transmission to further improve THP performance. Simulation and measurement results show that the proposed THP equalization with a double sampling rate can enhance the data transition time and, therefore, improve the eye opening.

1-20hit(175hit)